DOI QR코드

DOI QR Code

Bulletproof Performance of Hybrid Plates using a Composite Laminated with Abalone Shell Fragments

전복껍질 메소절편 기반 복합소재 합판 제작 및 이를 이용한 하이브리드 판재의 방탄특성

  • Kim, Jeoung Woo (Center for Applied Life Science, Hanbat National University) ;
  • Kang, Dae Won (Center for Applied Life Science, Hanbat National University) ;
  • Paik, Jong Gyu (Agency for Defense Development) ;
  • Youk, Youngki (Mirijagae Co.) ;
  • Park, Jeong Ho (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Shin, Sang-Mo (Center for Applied Life Science, Hanbat National University)
  • 김정우 (한밭대학교 생명현상융합연구센터) ;
  • 강대원 (한밭대학교 생명현상융합연구센터) ;
  • 백종규 (국방과학연구소) ;
  • 육영기 (미리자개) ;
  • 박정호 (한밭대학교 화학생명공학과) ;
  • 신상모 (한밭대학교 생명현상융합연구센터)
  • Received : 2018.11.14
  • Accepted : 2018.12.12
  • Published : 2019.01.27

Abstract

Nacre of abalone shell features a "brick-and-mortar" microstructure, in which micro-plates of calcium carbonate are bonded by nanometers-thick layers of chitin and proteins. Due to the microstructure and its unique toughening mechanisms, nacre possesses an excellent combination of specific strength, stiffness and toughness. This study deals with the possibility of using nacre fragments obtained from abalone shell for making a bulletproof armor system. A composite plate laminated with abalone shell fragments is made and compression and bend tests are carried out. In addition, a bulletproof test is performed with hybrid armor systems which are composed of an alumina plate, a composite plate, and aramid woven fabric to verify the ballistic performance of nacre. The compressive strength of the composite plate is around 258.3 MPa. The bend strength and modulus of the composite plate decrease according to the plate thickness and are about 149.2 MPa and 50.3 GPa, respectively, for a 4.85 mm thick plate. The hybrid armor system with a planar density of $45.2kg/m^2$, which is composed of an 8 mm thick alumina plate, a 2.4 mm thick composite plate, and 18 layers of aramid woven fabric, satisfy the NIJ Standard 0101.06 : 2008 Armor Type IV. These results show that a composite plate laminated with abalone shell fragments can be used for a bulletproof armor system as an interlayer between ceramic and fabric to decrease the armor system's weight.

Keywords

References

  1. F. Heinemann, M. Launspach, K. Gries and M. Fritz, Biophy. Chem., 153, 126 (2011). https://doi.org/10.1016/j.bpc.2010.11.003
  2. G. H. Kim and D. W. Kum, Science & Technology (in Korean) 432, 28 (2005), Korean Federation of Science and Technology Societies on the Web. from http://ebook.kofst.or.kr/book/200505/#page=28
  3. F. Barthelat, Science, 354, 32 (2016). https://doi.org/10.1126/science.aah6507
  4. H. Kakisawa and T. Sumitomo, Sci. Tech. Adv. Mater., 12, 064710 (2011). https://doi.org/10.1088/1468-6996/12/6/064710
  5. I. Corni, T. J. Harvey, J. A. Wharton, K. R. Stokes, F. C. Walsh and R. J. K. Wood, Bioinspir. Biomim., 7, 031001 (2012). https://doi.org/10.1088/1748-3182/7/3/031001
  6. E. Medvedovski, Ceram. Int., 36, 2117 (2010). https://doi.org/10.1016/j.ceramint.2010.05.022
  7. B. I. Yoon and J. I. Kim, Defense & Technology (in Korean) 416, 142 (2013), Korea Defense Industry Association on the Web. from https://www.kdia.or.kr/book/6/3/1/ebookViewList.do?pub_month=10&pub_year=2013&year=2013
  8. M. Garcia-Avila, M. Portanova and A. Rabiei, Procedia Mater. Sci., 4, 151 (2014). https://doi.org/10.1016/j.mspro.2014.07.571
  9. E. Medvedovski, Advances in Appl. Ceramics, 105, 241 (2006). https://doi.org/10.1179/174367606X113537
  10. A. Tasdemirci, G. Tunusoglu and M. Guden, Int'l J. Impact Engineering, 44, 1 (2012). https://doi.org/10.1016/j.ijimpeng.2011.12.005
  11. C. W. Seo, J. G. Lee, W. S. Tae, G. I. Kim and M. H. Cho, in Proceedings of the KSAS(Korean Society for Aeronautical & Space Sciences) Fall Conference (Yongpyong Resort, Korea, Nov. 2011) p.116.
  12. F. S. Luz, E. P. Lima, L. H. L. Louro and S. N. Monteiro, Mater. Res., 18, 170 (2015).
  13. Y. K. Youk, Korean Patent (in Korean) 10-0726191 (2007), Korea Intellectual Property Rights Information Service on the Web.
  14. W. Weibull, J. Appl. Mech., 18, 293 (1951). https://doi.org/10.1115/1.4010337
  15. Z. P. Bazant, Probabilist. Eng. Mech., 19, 307 (2004). https://doi.org/10.1016/j.probengmech.2003.09.003
  16. A. Carpinteri, B. Chiaia and P. Cornetti, Eng. Frac. Mech., 70, 2321 (2003). https://doi.org/10.1016/S0013-7944(02)00220-5
  17. W. G. Knauss, C. D. Babcock and H. Chai, NASA Contractor Report 159261 (1980), NASA Technical Report Server on the Web. from https://ntrs.nasa.gov/search.jsp?R=19800015188&hterms=159261&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchallany%26Ntt%3D159261
  18. E. Medvedovski, Ceram. Int., 36, 2103 (2010). https://doi.org/10.1016/j.ceramint.2010.05.021