• Title/Summary/Keyword: hybrid composite materials

Search Result 487, Processing Time 0.022 seconds

Tunable Nanostructure of TiO2/Reduced Graphene Oxide Composite for High Photocatalysis

  • He, Di;Li, Yongli;Wang, Jinshu;Yang, Yilong;An, Qier
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • In this study $TiO_2$/reduced graphene oxide ($TiO_2/rGO$) bipyramid with tunable nanostructure was fabricated by two-step solvothermal process and subsequent heat-treatment in air. The as-synthesized anatase $TiO_2$ nanocrystals possessed morphological bipyramid with exposed dominantly by (101) facets. Polyethylenimine was utilized during the combination of $TiO_2$ and graphene oxide (GO) to tune the surface charge, hindering the restack of graphene during solvothermal process and resulting in 1 to 5 layers of rGO wrapped on $TiO_2$ surface. After a further calcination, a portion of carbon quantum dots (CQDs) with a diameter about 2 nm were produced owing to the oxidizing and cutting of rGO on $TiO_2$. The as-prepared $TiO_2/rGO$ hybrid showed a highly photocatalytic activity, which is about 3.2 and 7.7 times enhancement for photodegradation of methyl orange with compared to pure $TiO_2$ and P25, respectively. We assume that the improvement of photocatalysis is attributed to the chemical bonding between rGO/CQDs and $TiO_2$ that accelerates photogenerated electron-hole pair separation, as well as enhances light harvest.

Comparative study of surface roughness between several finishing and polishing procedures on ormocer-based composite resin and nanohybrid composite resin (복합 레진에서 마무리 방법에 따른 표면 거칠기 비교)

  • Jeong, Suk-In;Oh, Nam-Sik;Lee, Myung-Hyeon;Lee, En-Jung;Cho, Jung-Hyeon;Ji, Sung-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.105-115
    • /
    • 2008
  • Statement of problem: Proper finishing and polishing enhance both the esthetics and the longevity of restored teeth. Blade finishing technique would be suited for smoothing and finishing. Evaluation of this technique are necessary. Purpose: The purpose of this study was to evaluate the blade finishing and polishing procedures on the surface profile and roughness of ormocer-based composite resin and nanohybrid composite resin. Material and methods: The material included a ormocer-based composite resin ($Admira^{(R)}$ & $Admira^{(R)}$ Flow); a nanohybrid composite resin ($Grandio^{(R)}$ & $Grandio^{(R)}$ Flow). One hundred forty specimens of each group were prepared using a mylar strip and randomly divied into blade finishing and rubber polishing groups (n=10). The average surface roughness (Ra) in micrometers was measured and the surface profile was examined by scanning electron microscopy (SEM) (Magnification ${\times}$ 200). The data were analyzed by Mann-Whitney Test at 0.05 significance level. Conclusion: The results of this study indicated that the mylar strip produced the smoothest surface on all materials and among the finishing-polishing methods was not significanct difference (P>0.05). Ormocer-based flowable composite resin performedthe lowest variability in initial surface roughness among the tested materials.

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.

Introduction to Thermal Insulating Materials and Silica Aerogels (열 차단 소재와 실리카 에어로젤 개요)

  • Hong, Jin-Ho;Kim, Il;Yun, Ju-Ho;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • The term 'thermal insulating materials' describes a class of materials which can improve the thermal efficiency by reducing the thermal conduction, convention and radiation between the inside and outside of the system. As a thermal insulating material, numerous industrial applications are possible including the automobile, aerospace, aviation, and petrochemical. Especially, the silica aerogel, with their superior thermal insulating behavior, has been widely used as thermal insulating materials. Because the mechanical properties of the silica aerogel cannot meet the industrial demand, use of the silica aerogel is limited. This article aims to review the thermal insulating materials and silica aerogel, and to introduce the silica aerogel/polymer composites.

A STUDY ON IMPACT CHARACTERISTICS OF THE STACKING SEQUENCES IN CFRP COMPOSITES SUBJECTED TO FALLING-WEIGHT IMPACT LOADING

  • Im, K.H.;Park, N.S.;Kim, Y.N.;Yang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.203-211
    • /
    • 2003
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP (Carbon-fiber reinforced plastics) laminate plates based on considerations of stress wave propagation theory, which were converted to measurements of load and displacement verses time. The delamination area of impacted specimens for the different ply orientations was measured with an ultrasonic C-scanner to determine the correlation between impact energy and delamination area. The energy absorbed by a quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy of a hybrid specimen embedding GFRP (Glass-fiber reinforced plastics) layer was higher than that of normal specimens. Also, a falling weight impact tester was built to evaluate the characteristics and impact strength of CFRPs.

Relationship between Stiffness of Restorative Material and Stress Distribution for Notch-shaped Non-carious Cervical Lesions

  • Kim, Kwang-Hoon;Park, Jeong-Kil;Son, Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.64-67
    • /
    • 2008
  • This study investigated the influence of composite resins with different elastic moduli and occlusal loading conditions on the stress distribution of restored notch-shaped non-carious cervical lesions (NCCL) using 3D finite element analysis. Two different materials, Tetric Flow and Z100, were used as representative flowable hybrid resins for the restoration of NCCL. A static point load of 500 N was applied at the buccal and palatal cusps. The ratios of stress reduction to energy dissipation were better in the compressive state than the tensile state regardless of the restorative material. The total dissipation ratios for Tetric Flow were 1.5% and 4.2% larger than those for Z100 under compression and tension, respectively. Therefore, tensile stress poses more of a risk for tooth fracture, and Tetric Flow is a more appropriate material for restoration.

Interfacial stresses in RC beam bonded with a functionally graded material plate

  • Daouadji, Tahar Hassaine;Chedad, Abdebasset;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.693-705
    • /
    • 2016
  • Functionally graded material (FGM) plates can be bonded to the soffit of a beam as a means of retrofitting the RC beam. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. In this paper, an interfacial stress analysis is presented for simply supported concrete beam bonded with a functionally graded material FGM plate. This new solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FGM-RC hybrid structures.

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

Preparation and Thermal Insulation Property of UV Curable Hybrid Coating Materials Based on Silica Aerogel (실리카 에어로겔을 이용한 자외선 경화형 복합 코팅 물질의 제조 및 단열 특성)

  • Kim, Nam-Yi;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hydrophobic silica aerogel. The surface modification of silica aerogel was performed to obtain UV curable urethane acrylate hybrid coating sols with good compatibility by using surfactant(Brij 56). The polycarbonate substrates were coated by the prepared composites and cured under UV radiation. The incorporation of aerogel with only 10 vol% of content resulted in remarkable improvement by about 28% in the thermal insulation property of the coated film, as compared with substrate. In addition, increasing aerogel content was found to give minor effect on the variation of optical transparency, adhesion, and surface hardness of the coated film.

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.