• Title/Summary/Keyword: hybrid building system

Search Result 238, Processing Time 0.021 seconds

A Fundamental Study on the Composition for the Hybrid Dehumidification System Using Thermoelectric Device (열전소자를 활용한 하이브리드 제습시스템의 구성에 관한 기초적 연구)

  • Ryu, Seong-Ryong;Yeom, Ho-Jin;Lee, Hyun-Jae;Cho, Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.618-626
    • /
    • 2018
  • In this paper, the hybrid dehumidification system using thermoelectric device is based on the idea of utilizing waste heat from the heat dissipation side of thermoelectric device as a heat source to regenerate chemical desiccant. We would like to apply this system to spaces required dehumidification due to continuous moisture generation or local high humidity in the houses. And, we want to confirm the possibility of developing the hybrid dehumidification system that combines passive dehumidification using chemical desiccant with active dehumidification using thermoelectric device.

Evaluation of ductility capacity of steel-timber hybrid buildings for seismic design in Taiwan

  • Chen, Pei-Ching;Su, I-Ping
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2022
  • Recently, steel-timber hybrid buildings have become prevalent worldwide because several advantages of both steel and timber structures are maintained in the hybrid system. In Taiwan, seismic design specification related to steel-timber hybrid buildings remains void. In this study, the ductility capacity of steel-timber hybrid buildings in Taiwanese seismic design specification is first proposed and evaluated using nonlinear incremental dynamic analysis (IDA). Three non-linear structural models, 12-story, 8-story, and 6-story steel-timer hybrid buildings were constructed using OpenSees. In each model, Douglas-fir was adopted to assemble the upper 4 stories as a timber structure while a conventional steel moment-resisting frame was designated in the lower part of the model. FEMA P-695 methodology was employed to perform IDAs considering 44 earthquakes to assess if the ductility capacity of steel-timber hybrid building is appropriate. The analytical results indicate that the current ductility capacity of steel moment-resisting frames can be directly applied to steel-timber hybrid buildings if the drift ratio of each story under the seismic design force for buildings in Taiwan is less than 0.3%. As a result, engineers are able to design a steel-timber hybrid building straightforwardly by following current design specification. Otherwise, the ductility capacity of steel-timber hybrid buildings must be modified which depends on further studies in the future.

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

Application of Performance Based Design Concept using Hybrid-type Base-Isolation System (Hybrid-type 면진장치를 이용한 성능설계 개념의 적용)

  • Chun, Young-Soo;Whang, Ki-Tea;Rim, Jong-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.502-505
    • /
    • 2004
  • Now for the first time in Korea pilot project on application of base isolation system to the RC building is carrying out by collaboration with KNHC and DRB dongil. The hybrid-type base isolation system, which is composed of sliding bearings and laminated rubber bearings and can make the resonance period of base isolated buildings comparatively long up to 4 or 5 seconds, is applied to this building. In this paper the overview of this project, the dynamic characteristics of this particular building and the response reduction effect against earthquakes are presented.

  • PDF

Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices (가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어)

  • 고현무;옥승용;우지영;박관순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF

Evaluation of Condensation Prevention for Centralized Hybrid Ventilation System Using TDR (TDR을 이용한 중앙집중형 하이브리드 환기시스템의 결로방지 성능 평가)

  • Kim, Yu-Min;Lee, Jong-Eun;Choi, Gyeong-Seok;Lee, Yong-Jun;Kang, Jae-Sik
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.81-86
    • /
    • 2015
  • Purpose: Condensation in the apartment housing is one of the most significant defects and complaints for condensation are rapidly increasing according to the growing interest in residential environment. Korea government established a regulation for reducing condensation in the apartment housing and TDR is adapted as a standard. However prevention of condensation depend on improving the performance of building envelop has limitation because of the increase of the cost. Centralized Hybrid ventilation system is suggested to prevent condensation. Method: Field measurement was conducted to verify the ventilation rate of the ventilation system. Based on the measurement, air network and CFD simulation was conducted to analyze ventilation rate for each room. Surface temperature was calculated by regulated TDR according to the regions and surfaces. The performance of condensation prevention was evaluated by the ventilation rate and surface temperature. Result: In the results, it was found that condensation was prevented in more than 90% of households by the centralized hybrid ventilation system which provided 0.19 ~ 0.81ACH for each room.

Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance (준불연 외단열시스템의 역학적 특성에 관한 연구)

  • Choi, Ki-Sun;Ha, Soo-Kyung;Oh, Keun-Yeong;Park, Keum-Sung;Ryu, Hwa-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2021
  • The application of an adhesive calcium carbonate-based hybrid insulation board with quasi-combustibility in the external thermal insulation composite system(ETICS) ensures effective thermal performance and fire safety. This study aimed to conduct a mechanical test of the quasi-non-combustible hybrid insulation board as well as its constituent materials to obtain the basic data for the structural design of the adhesive ETICS. Test specimens were fabricated based on domestic and foreign test standards to examine and evaluate their tensile, compressive, flexural, and shear strengths. The strength characteristics of the quasi-non-combustible hybrid insulation board were identified from the test results, which verified that the minimum required physical properties suggested by the current KS M ISO 4898 were met. Furthermore, the quasi-non-combustible ETICS used in this study was found to be suitable for use as an external insulation system for walls unless subjected to continuous gravity load, such as a heavy exterior finish.

Optimum Design For a Highly Integrated Tall Building System (초고밀도 고층복합빌딩시스템의 최적설계)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, as the alternative design for highly integrated city area. Considering a tri-axial symmetric conditions and boundary conditions for the three-dimensional building structure system, a two-dimensional model is composed. In the proposed indeterminate structural model, important design variables are determined for obtaining minimum horizontal deflections, reactions and bending moments at the ground level of the buildings. Regarding a case of the provided two spatial structures connected to 4 buildings, the optimum location of middle located spatial structure is 45% from the top of the building, which minimize the end moments at the bottom of the buildings. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the system due to the added internal truss-dome structures in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Case Study of Hybrid HVAC system Applied VRF (VRF 응용 Hybrid 공조시스템 Case Study)

  • Kim, Seong-Sil;Park, Wan-Kyu;Hur, Inn-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.357-362
    • /
    • 2008
  • The present study has been conducted variable refrigerant flow system applied building. Multi air-conditioning system has some benefits : easier building management and maintenance and energy saving. Recently, the system heat pump has been employed in medium-sized and tall buildings. However, the performance data and design method for system heat pump are limited in literature due to complicated system parameters and operating conditions. In the present study, case study of a system heat pump applied various building. The aim of this paper is to application multi air-conditioners and to inform the benefits of multi air-conditioners.

  • PDF

Analytical Study on the Performance of Ground Source Compound Hybrid Heat Pump System for Large Community Building (대형 Community 건물의 지열원 복합 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Lee, Jong-Gil;Hong, Seong-Ho;Choi, Young-Don;Cho, Sung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.634-637
    • /
    • 2008
  • Ground source heat pumps are clean, energy-efficient and environment-friendly systems cooling and heating. Although the initial cost of ground source heat pump system is higher than that of air source heat pump, it is now widely accepted as an economical system since the installation cost can be returned within an short period of time due to its high efficiency. In the present study, performances of ground source compound hybrid heat pump system applied to a large community building are simulated. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. If among several renewable energy sources, ground, river, sea, waste water source are chosen as available alternative energies are combined, COP of the system can be increased largely and hybrid heat pump system can reduced the fuel cost.

  • PDF