• Title/Summary/Keyword: hybrid MMC

Search Result 17, Processing Time 0.018 seconds

The Effect of SiCp Size on the Mechanical Preperties of ($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 Hybrid Mg Composites (($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 하이브리드 Mg 복합재료의 기계적 특성에 미치는 SiCp크기의 영향)

  • 하창식;김봉룡;조경목;박익민;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.29-33
    • /
    • 2001
  • In the present study, AZ91Mg/$\textrm{Al}_2\textrm{O}_3$ short fiber+SiC particulates hybrid metal matrix composites(MMCs) were fabricated by squeeze casting method. Different particulate sizes of 45, 29 and $9\mu\textrm{m}$ were hybridized with 5% volume fraction to investigate the effect of SiC particulates size on microstructure, mechanical and thermal properties such as hardness, flexural strength, wear resistance and thermal expansion. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements. Some aggregation of SiC particulates caused by particle pushing was observed especially in the hybrid composites containing in fine particulates($9\mu\textrm{m}$). The hardness and flexural strength were improved by decreasing particulates size, whereas wear resistance improved by increasing particulates size because of large particulates restricting matrix wear from contacted stress. Regardless of particulates size, thermal expansion of composites was the same. This may be because the content of particulates was in all cases 5 volume fraction.1

  • PDF

Nondestructive Evaluation on Strength Characteristic and Damage Behavior of Al 7075/CFRP Sandwich Composite (Al 7075/CFRP 샌드위치 복합재료의 강도 및 손상특성에 대한 비파괴 평가)

  • Lee, Jin-Kyung;Yoon, Han-Ki;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2328-2335
    • /
    • 2002
  • A hybrid composite material has many potential usage due to the high specific strength and the resistance to fatigue, when compared to other composite materials such as fiber reinforced plastic(FRP) and metal matrix composite(MMC). However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. In this study, Al 7075 sheets and carbon epoxy preprags were used to fabricate the hybrid composite. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. AE technique was used to clarify the microscopic damage behavior and failure mechanism of A17075/CFRP hybrid composite. It was found that AE paralneters such as AE event, energy and amplitude were effective to evaluate the failure process of Al 7075/CFRP composite. In addition, the relationship between the AE signal and the characteristics of fracture surface using optical microscope was discussed.

The Design and Implementation of SSPA(Solid State Power Amplifier) using chip device (Chip소자를 이용한 SSPA 설계 및 제작에 관한 연구)

  • Kim Yong-Hwan;Min Jun-ki;Kim HyunJin;Yoo Hyeong-soo;Lee Hyeong-kyu;Hong Ui-seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.65-72
    • /
    • 2003
  • In this work a 6-stage hybrid power amplifier which can be used for the wireless communication systems for MMC(hficrowave Micro Cell) and ITS wireless communication system is designed and fabricated. Ihe power amplifier's each stages was fabricated Hetero-junction Power FET of bare chip type and an alumina substrate with $\varepsilon_{r}$=9.9 and 15-mil thickness. The measured results of power amplifier module showed 33.2$\~$36.5 dB small signal gain, 33.0$\~$34.0 dBm output power at forward frequency (17.6 GHa $\~$ 17.9 CHz) and 36.0$\~$37.0 dB small signal gain, 33.0$\~$34.5 dBm output power at reverse frequency (19.0 GHz $\~$19.2GHz).

  • PDF

Hybrid Double Direction Blocking Sub-Module for MMC-HVDC Design and Control

  • Zhang, Jianpo;Cui, Diqiong;Tian, Xincheng;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1486-1495
    • /
    • 2019
  • Dealing with the DC link fault poses a technical problem for an HVDC based on a modular multilevel converter. The fault suppressing mechanisms of several sub-module topologies with DC fault current blocking capacity are examined in this paper. An improved half-bridge sub-module topology with double direction control switch is also designed to address the additional power consumption problem, and a sub-module topology called hybrid double direction blocking sub module (HDDBSM) is proposed. The DC fault suppression characteristics and sub-module capacitor voltage balance problem is also analyzed, and a self-startup method is designed according to the number of capacitors. The simulation model in PSCAD/EMTDC is built to verify the self-startup process and the DC link fault suppression features.

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

Studies on X-Y Chromosome Dissociation Induced by Environmental Mutagens in Mouse (환경성 돌연변이원에 의한 Mouse의 X-Y 염색체 조기분리에 관한 연구)

  • 윤경희;이원호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.599-605
    • /
    • 1998
  • The purpose of this work was to examine whether X-Y chromosome dissociation in the primary spermatocytes of mice could be used as an in vivo short-term assaying system that detect environmental mutagens. Four alkylating agents(EMS, MMS, MMC and MNNG) which were known as strong mutagens were administered to BALB/c male mice 3-4 months old. In the control group, the mean frequencies of previously dissociated X and Y chromosomes and autosomes were 7.17% and 2.12%, respectively. Compared to the control group, mutagen-treated groups have no significant differences in dissociation rate of autosomes, while these poops were about 1.2-2.5 times higher in the frequencies of X-Y dissociation. Generally, X-Y dissociation frequency increased consistently with the concentration of mutagens whereas the tendency of autosome dissociation frequency was variable among several mutagens. These results suggest that X-Y dissociation in the primary spermatocytes of mice is applicable as an vivo short-term assaying system for environmental mutagens. There were significantly distinct increase in dissociation of X-Y chromosome in both the hybrid and parents but the X-Y previous dissociation of hybrid appeared higher frequency than BALB /c and wild mice. These results indicate that the factor related to binding X-Y chromosome is specific to strains.

  • PDF

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF