• Title/Summary/Keyword: hurdle

Search Result 160, Processing Time 0.02 seconds

Development of the Gene Therapy Vector for Targeting Ovarian Cancer Cells through ErbB Receptors (ErbB 수용체를 이용한 난소암세포 표적 유전자치료 벡터의 개발)

  • Joung, In-Sil;Bang, Seong-Ho
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches have been described to improve gene transfer efficiency but suffer from a number of limitations. Here we tested an adenovirus carrying the small peptide ligand derived from heregulin${\beta}$ EGF-like domain onto fiber, the adenoviral capsid protein, to deliver transgene to ovarian cancer cells which overexpress ErbB, the cognate receptors for heregulin. The attachement of 53 amino acids to fiber didn't affect on the fiber's trimer structure that is critical for the viral entry to cells. The fiber-modified adenovirus can mediate entry and expression of a ${\beta}$-galactosidase into cancer cells in an increased efficiency compared the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to ErbB receptor overexpressing cancer cells, and could be used for future cancer gene therapy.

Rapid Establishment of CHO Cell Lines Producing the Anti-Hepatocyte Growth Factor Antibody SFN68

  • Song, Seong-Won;Lee, Song-Jae;Kim, Chang-Young;Han, Byungryeul;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1176-1184
    • /
    • 2013
  • Anti-hepatocyte growth factor (anti-HGF) monoclonal antibodies (mAbs) are potential therapeutics against various cancers. Screening for high-producer clones is a time-consuming and complex process and is a major hurdle in the development of therapeutic mAbs. Here, we describe an efficient approach that allows the selection of high-producer Chinese hamster ovary (CHO) cell lines producing the novel anti-HGF mAb SFN68, which was generated previously by immunizing HGF bound to its receptor c-Met. We selected an SFN68-producing parental cell line via transfection of the dihydrofolate reductase-deficient CHO cell line DG44, which was preadapted to serum-free suspension culture, with an SFN68-expression vector. Subsequent gene amplification via multiple passages of the parental cell line in a methotrexate-containing medium over 4 weeks, followed by clonal isolation, enabled us to isolate two cell lines, 2F7 and 2H4, with 3-fold higher specific productivity. We also screened 72 different media formulated with diverse feed and basal media to develop a suboptimized medium. In the established suboptimized medium, the highest anti-HGF mAb yields of the 2F7 and 2H4 clones were 842 and 861 mg/l, respectively, which were about 10.5-fold higher than that of the parental cell line in a non-optimized basal medium. The selected CHO cell lines secreting high titers of SFN68 would be useful for the production of sufficient amounts of antibodies for efficacy evaluation in preclinical and early clinical studies.

Development of Genome Engineering Tools for Metabolic Engineering of Butanol-producing Clostridium Species (Butanol 생합성 Clostridium 속 미생물 대사공학용 게놈 편집 도구 개발)

  • Woo, Ji Eun;Kim, Minji;Lee, Ji Won;Seo, Hyo Joo;Lee, Sang Yup;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.193-199
    • /
    • 2016
  • Global warming caused from the heavy consumption of fossil fuel is one of the biggest problems to be solved. Biofuel has been gained more attention as an alternative to reduce the consumption of fossil fuel. Recently, butanol produced from the genus Clostridium has been considered as one of the promising alternatives for gasoline, fossil based fuel. Nevertheless, the lack of the genome-engineering tools for the genus Clostridium is the major hurdle for the economic production of butanol. More recently, genome engineering tools have been developed for metabolic engineering of butanol-producing Clostridium species, which includes genome scale network model and genome editing tools on the basis of mobile group II introns and CRISPR/Cas system. In this study, the genome engineering tools for butanol-producing Clostridium species have been reviewed with a brief future perspective.

Production Technology of Low-cholesterol Egg Prodecuts and Recycling of By-Products (저콜레스테롤 계란제품의 생산기술과 부산물의 재활용)

  • 유익종
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.04a
    • /
    • pp.23-36
    • /
    • 2000
  • Hurdle technique was used to remove cholesterol efficiently from liquid egg yolk. The quality of the low cholesterol egg products from the process were evaluated. From the 75 % cholesterol reduced egg yolk through $\beta$-cyclodextrin treatment. 2 times weight of soy bean oil was added to the egg yolk and homogenized followed by centrifuged to be maximized to remove cholesterol. When the pH of the yolk was adjusted to 9, 92 % of cholesterol was removed while 95.4 % of cholesterol was removed when 3 times weight of soy bean oil was added to the egg yolk. As the results of application of supercritical carbon dioxide extraction to the 75 % cholesterol reduced egg yolk through ${\beta}$-cyclodextrin treatment, 92.5 % of the cholesterol was removed from the egg yolk at $35^{\circ}C$, 4,500 psi, for 4 hours under co-solvent. The quality characteristics of the produced low cholesterol egg products were analysed. The cholesterol reduced egg yolk produced from ${\beta}$-cyclodextrin and soy bean oil treatment showed the lower emulsion capacity compared with control. The fatty acid composition of the cholesterol reduced egg yolk produced from ${\bet}a$-cyclodextrin and soy bean oil treatment showed increased C18:2 and C18:3 compared with control while decreased C16:1 and C18: 1 compared with control. The saponification method with extracting solvent of hexane showed that cholesterol concentration was 28.1 %. The quantity of hydrolysis solution(95 % ethanol : 33 % KOH = 94 : 6) was varied from 40 to 80 times of sample weights and the cholesterol concentration of 35.7 % was the highest result in the 60 times(v/w) hydrolysis solution. Cholesterol concentration of 35.7 % was recovered at the first trial with saponification method. but it could be improved up to 95.7 % after 4 times repetitive purification.

  • PDF

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal (유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거)

  • Seo, Younggyo;Oh, Daemin;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle (초기변형률에 의한 미소바늘의 피부조직 관통력 감소)

  • Kim, Jonghun;Park, Sungmin;Nam, Gyungmok;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.851-856
    • /
    • 2016
  • Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force.

The Buyer's Remedies for Lack of Conformity under the PELS

  • Lee, Byung-Mun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.40
    • /
    • pp.3-30
    • /
    • 2008
  • This article attempts to describe and analyze the rules on the buyer's remedies for lack of conformity under PELS. It shows that such remedies under the PELS operate in a two-tier remedial scheme which is alien to both domestic and international legal systems. That is, repair and replacement take the position of primary remedy, whereas termination, price reduction and damages are secondary remedies which are available only where the primary remedies cannot be invoked. Notwithstanding its superiority, the PELS have some drawbacks in several aspects. First, the PELS seems to place its focus on the factor of cost except the other factors, for instance, the significance of the lack of conformity, when one decides whether the first tier remedies cause the seller unreasonable effort or expense. It is argued that the factors can be considered by referring to art. 1:302 PECL. Second, the PELS does not expressively provide any exclusion of the seller's right to choose between repair or replacement on the basis of unreasonable uncertainty in reimbursing the expenses advanced by the buyer. It argues that if there is such uncertainty, it should be regarded as causing the buyer an unreasonable inconvenience under art. 4:204(1). Third, the PELS does not seem to properly reflect the consumer's interests in that most consumers prefer to have the absolute right of termination as against the commercial sellers who have a relatively stronger bargaining position. The reasons for that is that there is a big hurdle, i.e., a hierarchy of remedies, to be overcome by the consumer to battle with the commercial seller, and that unavoidable vagueness in defining a minor lack of conformity has been often used against the consumer, but in favour of the commercial seller with a strong bargaining position.

  • PDF

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

The Study on the Performance and Determinants of Product Innovation in Machinery Industry (기계산업의 제품혁신 성과 및 결정요인에 관한 연구)

  • Bong, Kang Ho;Park, June Young;Park, Jaemin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.427-434
    • /
    • 2018
  • As noted by Pavitt (1984) and Malerbar (2002), previous studies have focused on identifying differences in industry characteristics between the machinery industry and other manufacturing industries. This study considered quantitative and qualitative aspects of performance of product innovation in analyzing what factors determine those outcomes. In particular, this study examined stepwise selection processes embedded in innovation activities by applying a hurdle negative binomial model as well as the Heckman two-step selection model. Results show that factors affecting performance improvement and patents differ, and the threshold effect and the intensity effect of innovation were also distinguished. These results imply that the R&D capability should be enhanced and external innovation is required to be effectively embodied in the organization. Furthermore, motivating employees plays a pivotal role in this technology and skill-intensive sector.

CD7-Specific Single Chain Antibody Mediated Delivery of siRNA to T Cells Inhibits HIV Replication in a Humanized Mouse Model

  • Ban, Hong-Seok;Kumar, Priti;Kim, Na-Hyun;Choi, Chang-Son;Shankar, Premlata;Lee, Sang-Kyung
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.62-64
    • /
    • 2008
  • A major hurdle to the development of RNA interference as therapy for HIV infection is the delivery of siRNA to T lymphocytes which are difficult cells to transfect even in vitro. We have employed a single chain antibody to the pan T cell surface antigen CD7 was conjugated to an oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2${\gamma}$-/- mice reconstituted with human peripheral blood lymphocytes (Hu-PBL). Using a novel delivery, we first show that scFvCD7-9R efficiently delivered CD4 siRNA into human T cells in vitro. In vivo administration to Hu-PBL mice resulted in reduced levels of surface CD4 expression on T cells. Mice infected with HIV-1 and treated on a weekly basis with scFvCD7-9R-siRNA complexes targeting a combination of viral genes and the host coreceptor molecule CCR5 successfully maintained CD4/CD3 T cell ratios up to 4 weeks after infection in contrast to control mice that displayed a marked reduction in CD4 T cell numbers. p24 antigen levels were undetectable in 3 of the 4 protected mice. scFvCD7-9R/antiviral siRNA treatment also helped maintain CD4 T cell numbers with reduced plasma viral loads in Hu-PBL mice reconstituted with PBMC from donors seropositive for HIV, indicating that this method can contain viral replication even in established HIV infections. Our results show that scFvCD7-9R could be further developed as a potential therapeutic for HIV-1 infection.

  • PDF