• Title/Summary/Keyword: humidity condition

Search Result 1,057, Processing Time 0.029 seconds

A Study on the Development of Thin Film Type Humidity Sensor Materials by Sol-Gel Method (III) (졸겔법에 의한 박막형 습도센서 소재개발에 관한 연구 (III))

  • You, D.H.;Kang, D.H.;Lee, E.H.;Yuk, J.H.;Jeong, S.Y.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1162-1164
    • /
    • 1995
  • In this paper, $TiO_2$-xmol%$V_2O_5$, x=0.0, 1.0, 2.0, 3.0 specimens are fabricated by Sol-Gel method. For the improvement of humidity sensitive characteristics for specimens, their microstructures are analysed and the optimum processing condition is established. Grain size increases with substitution rate of $V^{5+}$, on $Ti^{4+}$ site. Their humidity sensitive characteristics is good at 1mol% of $V_2O_5$ rate and heat-treated at $700^{\circ}C$. The capacitance of specimens decreases with frequency.

  • PDF

A Study on Removal Performance of $NH_3$ Odor Gas Using High Frequency Surface Discharge Body (고주파 연면방전체를 이용한 $NH_3$ 처리성능에 관한 연구)

  • 이주상
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 1996
  • The purpose of this study was to evaluate the decomposition efficiency of $NH_3$ odor gas using high frequency surface discharge body. The results from this study are as follows; 1, Voltage and frequency of electric elements have effects on removal of $NH_3$ odor. The higher these two elements were set up, the more efficiently deodorizing processing worked. In this experiment, the optimum voltage and frequency applicable were observed around AC 6.0 kVp-p and 24.0 kHz respectively. 2. The temperature, humidity and residence time were observed strong variables for NH$_3$ removal process. Its performance had limits at high temperature and humidity conditions. The longer the residence time continued, the more efficiently deodorization process worked. The experimental results showed that the deodorization was efficiently processed under such conditions as $30.0^{\circ}C$ in temperature, 60rh% in humidity and 0.3 sec in residence time. 3. It was observed that in deodorization experiment, $NH_3$ odor gas was perfectly decomposed under the concentration condition below 15.0ppm. Moreover it was considered as economic and practical in terms of maintenance cost when compared with other deodorization methods.

  • PDF

Mechanical Characteristics for Pulp Molds Made of ONP and OCC with Different Mixing Ratio (고지배합비율에 따른 펄프몰드 물성 변화 연구)

  • Park, In-Sik;Kim, Jae-Nung;Kim, Dae-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.04a
    • /
    • pp.285-297
    • /
    • 2007
  • As the demands of environment protection increase, the pulp mold container is developed to substitute for the plastic cushion materials like EPS(expanded poly styrene). The water-absorbing ratio, tensile strength and compressive strength of pulp mold are important factors to evaluate its shock absorbing characteristics. The study was performed to investigate the effects of the mechanical property changes on the various conditions of temperature and relative humidity for pulp mold containers made of mixed materials on ONP(old newspaper) and OCC(old corrugated container). This study also is evaluated the optimized mixing ratio of materials for making pulp mold by analyzing the changes of physical properties according to a various procured temperature and relative humidity conditions. The results show that the water absorption ratio of sample increased significantly, and tensile strength decreased $20{\sim}30%$, compressive strength decreased $10{\sim}20%$ by increasing relative humidity condition. And the results show that the ONP 50% and OCC 50% was optimized mixing ratio according to the samples.

  • PDF

Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler (재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

Irrigation with Microbial-Contaminated Water and Risk of Crop Contamination (미생물 오염 용수 관개에 의한 작물의 오염 위험성)

  • Choi, C. Yeon-Sik;Song, In-Hong;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.87-97
    • /
    • 2007
  • The aim of this study was to compare crop contamination between two irrigation methods using microbial-contaminated water. The effect of relative humidity on microbial survival of the three indicator microorganisms was also investigated. Escherichia coli ATCC 25922, Clostridium perfringens ATCC 3624, and coliphage PRD1 were applied to irrigation water to grow cantaloupe, lettuce, and bell pepper. Half of the sixteen plots were subsurface drip irrigated (SDI) and the other half were furrow irrigated (FI). Two relative humidity levels were controlled at 15-65 % and 55-80 % for the dry and humid condition experiments, respectively. Samples of produce, surface soil, and subsurface soil at a depth of 10 cm were collected over a two-week period following the application of the study microorganisms. Overall, greater contamination of both produce and soil occurred in the FI plots. For the SDI plots, preferential water paths and resulting water appearance on the seed beds seemed to be responsible for produce contamination. Relative humidity levels did not appear to affect microbial survival in soil. PRD 1 showed lower inactivation rates than 5. coli in both dry and humid conditions. C. perfringens did not experience significant inactivation over the experimental period, suggesting this microorganism can be an effective indicator of fecal contamination.

산림토양에서의 Phenanthrene, Pyrene, Benzo(a)pyrene의 휘발 속도: 토양온도와 대기습도의 영향

  • 이신향;김현숙;이동수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.99-102
    • /
    • 2001
  • The soil-to-air fluxes of three PAHs(Phenanthrene, Pyrene, Benzo(a)pyrene) from a laboratory contaminated forest soil were investigated in experimental microcosms. The effects of soil temperature(45$^{\circ}C$, $25^{\circ}C$, 5$^{\circ}C$) and relative humidity(0%, 100%) were investigated according to existence of the humic layer(O layer) over the mineral layer(A layer). Volatilization flux experiments were carried out for a period of 96 hrs. The resulting PAHs volatilization fluxes from the different conditions were quantified and compared. In the mineral layer, highest volatilization flux among the individual PAHs was Phenanthrene >Pyrene> Benzo(a)pyrene on the conditions of 45 $^{\circ}C$, RH=100%. In the humic layer over the mineral layer, maximum volatilization flux was Phenanthrene on the condition of 45$^{\circ}C$, RH=0%. Results from flux experiments showed that volatilization fluxes of PAHs were dependent on soil temperature. Existance of humic layer over the mineral layer delayed transportation to the air of especially heaveir molecular PAHs. But, if humic layer is contained water sufficiently, it is possible that volatilization fluxes are enhanced by water convective flux according to variation of soil temperature and air relative humidity.

  • PDF

Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods (기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석)

  • Lee, Jae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

Sensing and Interfacial Evaluation of Ni Nanowire Strands/Polymer Composites using Electro-micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 강화 고분자 복합재료의 Sensing과 계면 물성 평가)

  • Kim, Sung-Ju;Jung, Jin-Gyu;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Sensing and interfacial evaluation of Ni nanowire strands/polymer composites were investigated using Electro-micromechanical technique. Electro-micromechanical techniques can be used as sensing method for micro damage, loading, temperature of interfacial properties. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type/epoxy composites were measured using uniformed cyclic loading and tensile test. Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Some new information on temperature and humidity sensing plus loading sensing of Ni nanowire strands/polymer composites could be obtained from the electrical resistance measurement as a new concept of the nondestructive interfacial evaluation.

  • PDF

A Study on the Scheme to Maintain the Flatness of MDF According by painting and by thickness to the Environment Humidity (습도환경에서 두께와 도장재별 MDF의 평탄도 유지방안에 대한 연구)

  • Jeong, Jae-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.5
    • /
    • pp.98-106
    • /
    • 2007
  • With the recent increase in the amount of interior materials, the medium-density fiberboard(MDF) has continued to be produced at an increasing rate. Accordingly, to prevent the deformation of MDF after its construction, secure the precision of its finishing and improve the performance of its design, this study attempted to investigate the effect of environment humidity conditions on flatness according to the field used in MDF and its relationship to other physical properties. An attempt was made to conduct this study by changing the conditions of surface treatment by moisture and by thickness. For this purpose, it is judged that it is desirable to prevent scheme to maintain the flatness by defining the coefficient of water absorption-induced length change as in the regulation on low-density soft fiberboard and adjusting the standard for wet bending strength upward. It is thought that is further studies will be conducted about the effect of material, adhesive and thermal pressure condition, production system and processing method used in MDF on its scheme to maintain the flatness and changes in length and thickness expansion.

MLR & ANN approaches for prediction of compressive strength of alkali activated EAFS

  • Ozturk, Murat;Cansiz, Omer F.;Sevim, Umur K.;Bankir, Muzeyyen Balcikanli
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • In this study alkali activation of Electric Arc Furnace Slag (EAFS) is studied with a comprehensive test program. Three different silicate moduli (1-1,5-2), three different sodium concentrations (4%-6%-8%) for each silicate module, two different curing conditions (45%-98% relative humidity) for each sodium concentration, two different curing temperatures ($400^{\circ}C-800^{\circ}C$) for each relative humidity condition and two different curing time (6h-12h) for each curing temperature variables are selected and their effects on compressive strength was evaluated then regression equations using multiple linear regressions methods are fitted. And then to select the best regression models confirm with using the variables, the regression models compared between itself. An Artificial Neural Network (ANN) models that use silicate moduli, sodium concentration, relative humidity, curing temperature and curing time variables, are formed. After the investigation of these ANN models' results, ANN and multiple linear regressions based models are compared with each other. After that, an explicit formula is developed with values of the ANN model. As a result of this study, the fluctuations of data set of the compressive strength were very well reflected using both of the methods, multiple linear regression with quadratic terms and ANN.