• Title/Summary/Keyword: humidity condition

Search Result 1,057, Processing Time 0.034 seconds

환경조건(습도,바람(풍),온도)에 따른 연소특성의 이해

  • Im, Hong-Sun
    • Fire Protection Technology
    • /
    • s.10
    • /
    • pp.19-26
    • /
    • 1991
  • This reoprt intended to apprehend the principle for combustible phenomena in the environments and the prediction of its hazard in the virtual fire. So we first explained the basic machanism for the combustion, and discovered the tendency of the conbustion in the condition of the environmental factors(Humidity, Wind, Temperature) by means of some sxperiments about the wood as example.

  • PDF

Enhanced Graft-take Ratio and Quality of Grafted Tomato Seedlings by Controlling Temperature and Humidity Conditions (토마토 공정묘의 접목활착율과 묘소질 향상을 위한 접목 활착실내의 적정 온.습도 조건 구명)

  • Vu, Ngoc-Thang;Zhang, Cheng-Hao;Xu, Zhi-Hao;Kim, Young-Shik;Kang, Ho-Min;Kim, Il-Soep
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • This study was conducted to enhance graft-take ratio and quality of grafted tomato seedlings by controlling temperature and humidity during the healing and acclimatization processes. Three temperature levels ($20^{\circ}C$, $23^{\circ}C$, and $26^{\circ}C$) were carried out to determine optimum temperature on four rootstocks. In addition, twelve combinations of three relative humidity levels (70%, 80%, and 90%) and four temperature levels ($17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$, and $26^{\circ}C$) were set up to evaluate the effect of relative humidity and temperature on the graft-take ratio of grafted seedlings. In the other hand, five relative humidity periods (H0, H1, H2, H3, and H4: 90% relative humidity for first 0, 1, 2, 3 and 10 days and afterwards relative humidity was reduced to 70%, respectively) were examined effect of relative humidity periods on the graft-take and quality of grafted seedlings. The higher graft-take ratios (84.0~87.4%) were showed at $23^{\circ}C$ compared to $20^{\circ}C$ and $26^{\circ}C$ in all rootstocks. Graft-take ratios decreased and number of diseased plants increased at high temperature. The graft-take ratios increased with increasing relative humidity in all temperature levels on the $3^{rd}$ and $7^{th}$ day after grafting. However, increasing relative humidity significantly increased percent of diseased plants. The graft-take ratio reduced at ($26^{\circ}C$) and ($17^{\circ}C$) temperature under all relative humidity conditions. The graft-take ratio increased with increasing period of 90% relative humidity. Maximum graft-take ratios were observed in H2 and H3 treatments. Graft-take ratio decreased with increasing 90% relative humidity for 10 days (H4). Diseased plants had not been found in H0, H1, H2, and H3 treatments. Seedling quality was improved through increasing fresh and dry weight of root, compactness, and root morphology of tomato seedlings in H2 and H3 treatments. Therefore, high relative humidity (90%) for first 2 or 3 days and afterwards reduced low relative humidity (70%) at $23^{\circ}C$ condition during healing and acclimatization promoted the graft-take and quality of grafted tomato seedlings.

A Study on the Optical Characteristics According to the Lacquer Drying Conditions for the Conservation of Lacquerwares (칠기문화재 보존을 위한 옻칠 건조조건에 따른 광학적 특성 연구)

  • Hwang, In Sun;Park, Jung Hae;Kim, Soo-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.610-621
    • /
    • 2018
  • In conservation treatment lacquer has been used variously as a restoration material. However, dealing with Lacquer is very difficult as it dried in high humidity that can be harmful to the base materials. Also being natural varnish, dried lacquer layer is very different from the drying condition and the quality of the lacquer. These make difficult to predict the result of drying lacquer. In this study, using the humidity control machine, firstly, the main contents of the two different type of lacquer was experimented. And these lacquers was cured in various conditions. The duration time was checked until totally hardened. After that, obtained lacquer layers was analyzed to understand optical properties. Therefore, this study made a result about the relationship between characteristics of lacquer layer and the hardening condition. As a result, duration time of the Korean lacquer drying which has average 13.4% more urushiol than the Chinese lacquer is recorded a twice or triple decrease over it of the Chinese one. And, in all types of lacquer, the higher humidity makes the faster a pace of lacquer dried. In same lacquer, the shorter the duration time of drying lacquer is much darker and glossier. However, gloss deteriorated in saturated humidity. In humidity lower than RH 70%, lacquer is not hardened in 336 hours. When the layer totally cured through long period more than 30 days, the drying lacquer is appeared high brightness and almost transparent. Thus, in lower than RH 70%, it is hard to obtain durable layer.

Study on Heat Treatment of Red Pine Log (소나무 원목의 열처리에 관한 연구)

  • Eom, Chang-Deuk;Han, Yeonjung;Shin, Sang Chul;Chung, Yeong Jin;Jung, Chan Sik;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.50-56
    • /
    • 2007
  • FAO standard for heat sterilization of wood, International standards for phytosanitary measures (ISPM) No.15, must meet heat-treated wood core temperature to be higher than $56^{\circ}C$ and keep the temperature for more than 30 minutes. This study was carried out to analyze the heat treatment characteristics of domestic pinewood sterilized with the FAO standard. To enhance the effectiveness of heat treatment process in mountainous district energy consumption and time required to reach target temperature were evaluated at various temperature and relative humidity conditions and moisture contents of wood. Heat-treatment of high temperature and high humidity reduced the required heating time. Lower humidity levels at same temperature reduced energy consumption per unit time. However, lower humidity levels could not reduce total energy consumption greatly because longer treatment time was required at that condition. It is necessary to estimate energy consumption and predict treatment time in dynamic heating and cooling situations, because it frequently happens not to meet optimum treatment condition due to poor surrounding climates and operation performance of heat treatment facility in real field.

A Study on Desorption Efficiency for Polar Solvents Collected on Charcoal Tube (활성탄관에 포집된 극성유기용제의 탈착효율에 관한 연구)

  • Kim, Kyeong-Ran;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.104-118
    • /
    • 1995
  • This study was performed to evaluate factors affecting desorption of organic solvents collected on charcoal tube and to find out the optimum condition. Desorption efficiency for polar analytes was improved when several polar desorption solvents such as methanol, dimethylformamide(DMF), 2-(2-butoxyethoxy)ethanol were added to carbon disulfide($CS_2$). The best improvement was achieved when 10% dimethylformamide(DMF) in $CS_2$ was used as desorption solvent. During storage of polar analytes, recovery was greatly reduced. Especially, the recovery of cyclohexanone was decreased to 18.1 % after a month storage at $34^{\circ}C$. After two weeks storage, recovery of polar analytes was sharply decreased. Water adsorbed on charcoal interfered the recovery of polar analytes but didn't interfere that one of nonpolar solvent, toluene. When 10% DMF in $CS_2$ was used as desorption solvent, the effect of water on recovery was decreased, comparing with Desorption efficiency increased when analyte loading increased, and usage of 10% DMF in $CS_2$ decreased the loading effect. Increasing volume of desorption solvent was not effective to improve desorption efficiency of analytes when 10% DMF was used. Continuous shaking and sonication is not helpful to increase the desorption efficiency of analytes except cyclohexanone using 10% DMF. When silica gel used as adsorbent, methanol was better desorbent than dimethylsulfoxide. Analytes adsorbed on silica gel showed high recovery in low concentration and less affected by humidity. On the basis of this study, the following conclusions have been drawn. To improve the recovery of polar organic materials in air samples, it is necessary to analyze samples as soon as possible after they were collected. Otherwise, samples must be stored at low temperature. Using two components of desorption solvents, such as 10% DMF in $CS_2$, the effects of loading and humidity decreased for polar analytes such as methyl ethyl ketone and methyl isobutyl ketone. When work place has high humidity with low concentration of polar organic solvents, silica gel can be used as adsorbent, because it produces quantitative recovery for polar analytes at this condition. But it should be noted that high humidity makes breakthrough easy in silica gel samples.

  • PDF

Implementation of Remote Monitoring Scenario using CDMA Short Message Service for Protected Crop Production Environment

  • Bae, Keun-Soo;Chung, Sun-Ok;Kim, Ki-Dae;Hur, Seung-Oh;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • Protected vegetable production area is greater than 26% of the total vegetable production area in Korea, and portion of protected production area is increasing for flowers and fruits. To secure stable productivity and profitability, continuous and intensive monitoring and control of protected crop production environment is critical, which is labor- and time-consuming. Failure to maintain proper environmental conditions (e.g., light, temperature, humidity) leads to significant damage to crop growth and quality, therefore farmers should visit or be present close to the production area. To overcome these problems, application of remote monitoring and control of crop production environment has been increasing. Wireless monitoring and control systems have used CDMA, internet, and smart phone communications. Levels of technology adoption are different for farmers' needs for their cropping systems. In this paper, potential of wireless remote monitoring of protected agricultural environment using CDMA SMS text messages was reported. Monitoring variables were outside weather (precipitation, wind direction and velocity, temperature, and humidity), inside ambient condition (temperature, humidity, $CO_2$ level, and light intensity), irrigation status (irrigation flow rate and pressure), and soil condition (volumetric water content and matric potential). Scenarios and data formats for environment monitoring were devised, tested, and compared. Results of this study would provide useful information for adoption of wireless remote monitoring techniques by farmers.

Main Factors that Effect on the Ion-Migration of PCB (PCB의 이온-마이그레이션에 영향을 미치는 주요요인)

  • Jang, In-Hyeok;Kim, Jeong-Ho;Oh, Gil-Gu;Lee, Young-Joo;Lim, Hong-Woo;Choi, Youn-Ok
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Purpose: The purpose of this study is main factors (environmental conditions, pattern spacing, pattern material) that effect the ion-migration of PCB. Methods: Recently, the electronic components are becoming more high density of electronic device, so that electronic circuits have smaller pitches between the patten and more vulnerable to insulation failure. so the reliability of electric insulation of device has become an ever important issue as device contact pitches of pattern. Usually, ion-migration occurs in high temperature and high humidity environment as voltage is applied to the circuit. Under high temperature and high humidity, voltage applied electronic components respond to applied voltages by metals's electrochemical ionization and a conducting filament forms between the anode and cathode across a nonmetallic medium. This leads to short-circuit failure of the electronic component. Results: we studied ion-migration that occurs in accordance with the main factors (environmental conditions, pitches, pattern material). The PCB pattern material was made by two different types of material (free solder, OSP) for this research and pitches of pattern is 0.15mm, 0.3mm, 0.5mm. PCB was experimented in the environmental conditions (high temperature $120^{\circ}C$, high temperature and high humidity $85^{\circ}C$, 85%RH) and was analyzed for ion-migration through the experiment results. Conclusion: We confirmed that environmental condition, pitches of pattern, pattern material had effect on ion-migration of PCB.

Prevention of Barn Rot during Curing of Burley Tobacco I . Effect of Harvesting Time and Curing Condition (버어리종 잎담배 건조시 부패 방지)

  • 배성국
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.3
    • /
    • pp.235-238
    • /
    • 1989
  • This study was carried out to investigate the effect of environmental conditions of air temperature and relative humidity, varieties, and water content of leaves at harvesting time on the occurrence of barn rot during curing of burley tobacco. The curing environmental condition was combined with 4 air temperatures ranging from 25$^{\circ}C$ to 40$^{\circ}C$ and 3 different relative humidities. The harvested leaves with 3 different water contents were cured during the rainy season in curing barn. Barn rot occurred the most at 30$^{\circ}C$, and reduced at 25$^{\circ}C$ and remarkably decreased at above 35$^{\circ}C$. But no barn rot was observed at 40$^{\circ}C$. In influence of relative humidity, the percentage of rotten leaves was highest at 100% RH and remarkably reduced at lower RH. Among two varieties, KB 101 was rotted smaller than Burley 21 under the all temperature and relative humidity conditions, however those considerably showed no difference. The rate of disease development increased in the lower leaves more than in the upper leaves. In the water content of leaves at harvesting time, 29.5% of the rotten leaves was observed at W.S.D. (water saturation deficit) 10.3%, but no barn rot was found at W.S.D. 6.4%.

  • PDF

Development of a General Drying Model of Red Pepper (고추의 범용(汎用) 건조모형(乾燥模型) 개발(開發)에 관한 연구(硏究))

  • Cho, Y.J.;Koh, H.K.;Park, J.B.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.60-82
    • /
    • 1991
  • Drying process of red pepper is very important in terms of drying cost and quality of the end product. Recently, many studies on red pepper drying have been performed. Nevertheless, an optimum drying condition is not established yet. Drying characteristics of red pepper is much affected by drying factors such as variety and initial state of red pepper as well as by environmental drying factors such as temperature and relative humidity of drying air. Various varieties of red pepper are being cultivated and the initial state of red pepper at harvest is very ambiguous. For this reason, it is very costly and time-consuming to establish an optimum drying condition of red pepper by experiment. A general drying model to descirbe a drying process has not been developed due to diversity of drying characteristics of red pepper. This study was, therefore, performed to develop a general drying model describing a drying process of red pepper. The results from this study are summarized as follows. 1. A basic model was established to develop an appropriate mositure content model and temperature model describing a drying process of red pepper, and the basic model was validated with experimental data. 2. The bone dry weight of fruit and mositure content were accepted satisfactorily as parameter to define the arbitrary red pepper. 3. The equilibrium moisture content of red pepper was found out to be different according to the variety of red pepper, air temperature and relative humidity. Also, the EMC model was developed using the parameters of air temperature, relative humidity and bone dry weight of fruit. 4. A general drying model for red pepper was developed, parameters of which were expressed as the function of drying factors related with drying phenomena. The developed drying model was found out to describe well the drying process of red pepper.

  • PDF

Adsorption Properties of SO$_2$ Using Fibrous Strong-base Anionic ion Exchange Scrubber (강염기성 음이온교환 섬유 스크러버를 이용한 SO$_2$의 흡착특성)

  • 황택성;최재은;강경석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.661-669
    • /
    • 2002
  • The purpose of this research is to absorb and remove sulfur dioxide existing in the air by using ion exchange non-woven fabric. So we found out very appropriate condition of anionic exchange fabric scrubber by measuring amount of SO$_2$ adsorption under the atmosphere that concentration, velocity, and humidity was 100∼200 ppm, 0.6∼1.0 m/sec, and 30∼90 RH%, respectively. Ion exchange capacity of ion exchanger showed the maximum value, 3.75 meq/g at pH 4, and adsorption equilibrium time was the maximum value, 30 h when gas velocity was 0.6 m/sec, moreover, at 80$\^{C}$, adsorption equilibrium time tended to decrease more than 10 h. When concentration was 200 ppm, while reaction speed between SO$_2$ and ligand of fibrous ion exchanger was getting faster, adsorption break point had a tendency to get faster as well. In addition, when relative humidity in the scrubber was 90%, adsorption efficiency was 7.6%/h that seemed to be 30% higher than 4.6%/h coming from the condition that relative humidity had been 30%, and it was totally absorbed under 5 wt% NaOH solution in 5 minutes.