• Title/Summary/Keyword: human-machine contact

Search Result 33, Processing Time 0.027 seconds

A MEMS/NEMS sensor for human skin temperature measurement

  • Leng, Hongjie;Lin, Yingzi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2011
  • Human state in human-machine systems highly affects the overall system performance, and should be detected and monitored. Physiological cues are essential indicators of human state and useful for the purpose of monitoring. The study presented in this paper was focused on developing a bio-inspired sensing system, i.e., Nano-Skin, to non-intrusively measure physiological cues on human-machine contact surfaces to detect human state. The paper is presented in three parts. The first part is to analyze the relationship between human state and physiological cues, and to introduce the conceptual design of Nano-Skin. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography are closely related with human state. They can be measured through human-machine contact surfaces using Nano-Skin. The second part is to discuss the technologies for skin temperature measurement. The third part is to introduce the design and manufacture of the Nano-Skin for skin temperature measurement. Experiments were performed to verify the performance of the Nano-Skin in temperature measurement. Overall, the study concludes that Nano-Skin is a promising product for measuring physiological cues on human-machine contact surfaces to detect human state.

Gestures as a Means of Human-Friendly Communication between Man and Machine

  • Bien, Zeungnam
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.3-6
    • /
    • 2000
  • In this paper, ‘gesture’ is discussed as a means of human-friendly communication between man and machine. We classify various gestures into two Categories: ‘contact based’ and ‘non-contact based’ Each method is reviewed and some real applications are introduced. Also, key design issues of the method are addressed and some contributions of soft-computing techniques, such as fuzzy logic, artificial neural networks (ANN), rough set theory and evolutionary computation, are discussed.

  • PDF

Non-Contact Line-of-sight Detection using Color Contact Lens for Man-Machine Interface

  • Nishiuchi, Nobuyuki;Kurihara, Kenzo;Takada, Hajime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.391-394
    • /
    • 1998
  • The man-machine interface Is an important factor in the computer system, and it is thought that line-of-sight (LOS) detection technology will allow significant advances in this field. Techniques for detecting LOS for use in human interfaces have been studied[1][2]. In earlier studies, however, LOS was detected with a head piece, goggles, or through fixing the position of the head. The limitations imposed by these fixed conditions render them unsuitable far use in interfaces, as they have adverse mental or physical effects on humans. Therefore. they have not been sufficiently developed for practical application. Research on non-contact LOS detection is expected to result in a usable LOS man-machine interface[3][4], and the current study is intended to be a step in that direction. The authors used color contact lenses for LOS detection, and applied this new method to a computer interface. The use of color contact lenses simplifies image processing. The algorithm used in this study is sufficiently accurate for practical applications. This technique can be used in input devices, in virtual reality applications, and in human engineering research.

  • PDF

Human-Machine Interaction based on a Real-time Upper Limb Motion Prediction using Surface Electromyography (표면 근전도 신호를 이용한 실시간 상지부 동작 예측을 통한 인간-기계 상호작용)

  • Kwon, Sun-Cheol;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.418-421
    • /
    • 2009
  • This paper presents a human-machine interaction based on a realtime upper limb motion prediction method using surface electromyography (sEMG). The motions were predicted using an artificial neural network algorithm and sEMG signals which are acquired from five muscles, and then a manipulator was controlled to follow after the predicted motions. Upper limb motions were restricted to 2D vertical plane with the contact condition between a user and an end-effector of manipulator. In order to demonstrate the feasibility of the proposed method, experiments using developed method and using a goniometer were performed. The results showed that the proposed real-time motion prediction method can be implemented a human-machine interaction system.

  • PDF

Study on Gesture and Voice-based Interaction in Perspective of a Presentation Support Tool

  • Ha, Sang-Ho;Park, So-Young;Hong, Hye-Soo;Kim, Nam-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.593-599
    • /
    • 2012
  • Objective: This study aims to implement a non-contact gesture-based interface for presentation purposes and to analyze the effect of the proposed interface as information transfer assisted device. Background: Recently, research on control device using gesture recognition or speech recognition is being conducted with rapid technological growth in UI/UX area and appearance of smart service products which requires a new human-machine interface. However, few quantitative researches on practical effects of the new interface type have been done relatively, while activities on system implementation are very popular. Method: The system presented in this study is implemented with KINECT$^{(R)}$ sensor offered by Microsoft Corporation. To investigate whether the proposed system is effective as a presentation support tool or not, we conduct experiments by giving several lectures to 40 participants in both a traditional lecture room(keyboard-based presentation control) and a non-contact gesture-based lecture room(KINECT-based presentation control), evaluating their interests and immersion based on contents of the lecture and lecturing methods, and analyzing their understanding about contents of the lecture. Result: We check that whether the gesture-based presentation system can play effective role as presentation supporting tools or not depending on the level of difficulty of contents using ANOVA. Conclusion: We check that a non-contact gesture-based interface is a meaningful tool as a sportive device when delivering easy and simple information. However, the effect can vary with the contents and the level of difficulty of information provided. Application: The results presented in this paper might help to design a new human-machine(computer) interface for communication support tools.

Hand Gesture Recognition Suitable for Wearable Devices using Flexible Epidermal Tactile Sensor Array

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1732-1739
    • /
    • 2018
  • With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

Lifesaver: Android-based Application for Human Emergency Falling State Recognition

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.267-275
    • /
    • 2021
  • Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.

A Study on the Optimization of the Layout for the ESD Protection Circuit in O.18um CMOS Silicide Process

  • Lim Ho Jeong;Park Jae Eun;Kim Tae Hwan;Kwack Kae Dal
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.455-459
    • /
    • 2004
  • Electrostatic discharge(ESD) is a serious reliability concern. It causes approximately most of all field failures of integrated circuits. Inevitably, future IC technologies will shrink the dimensions of interconnects, gate oxides, and junction depths, causing ICs to be increasingly susceptible to ESD-induced damage [1][2][3]. This thesis shows the optimization of the ESD protection circuit based on the tested results of MM (Machine Model) and HBM (Human Body Model), regardless of existing Reference in fully silicided 0.18 um CMOS process. His thesis found that, by the formation of silicide in a source and drain contact, the dimensions around the contact had a less influence on the ESD robustness and the channel width had a large influence on the ESD robustness [8].

  • PDF

Influence of Police Officer's Networking on Humint Application (경찰관의 인적네트워크수준이 휴민트를 이용한 경찰활동에 미치는 영향)

  • Shin, Jae-Hun;Kim, Sang-Woon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.606-613
    • /
    • 2018
  • The purpose of this study is to investigate on Humint, one of the intelligence activity conducted by police officer to prevent the possibility of crime in advance and to handle crime in short time. Also, this study aims to identify how interpersonal relationship of police influences Humint acquisition in order to find out the influence of Humint on actual policy activity. For completion, this study conducted survey on current police officer and developed the study based on these data. Humint refers to information acquired by contact between people and to information acquired by intangible contact. Humint, the intangible information, is delivered fast and identifies the other's hidden intention. Humint also approaches inaccessible information and has strength of acquiring information based on five senses instead of using machine. Humint plays vital role in human relations. The investigation on the influence of level, trust, and range of human relations on Humint application demonstrated that people with wide human relations applied Humint effectively on identifying trend. Also, people with wide range of human relations used Humint effectively when utilizing information to handle the crime.