• Title/Summary/Keyword: human vaccines

Search Result 166, Processing Time 0.025 seconds

The Function of Memory CD8+ T Cells in Immunotherapy for Human Diseases

  • Hanbyeul Choi;Yeaji Kim;Yong Woo Jung
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.10.1-10.16
    • /
    • 2023
  • Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin;Nguyen, Minh Trang
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

A Current Research Insight into Function and Development of Adjuvants (면역보조제의 작용 및 개발)

  • Sohn, Eun-Soo;Son, EunWha;Pyo, SuhkNeung
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.131-142
    • /
    • 2004
  • In recent years, adjuvants have received much attention because of the development of purified subunit and synthetic vaccines which are poor immunogens and require adjuvants to evoke the immune response. Therefore, immunologic adjuvants have been developed and testing for most of this century. During the last years much progress has been made on development, isolation and chemical synthesis of alternative adjuvants such as derivatives of muramyl dipeptide, monophosphoryl lipid A, liposomes, QS-21, MF-59 and immunostimulating complexes (ISCOMS). Biodegradable polymer microspheres are being evaluated for targeting antigens on mucosal surfaces and for controlled release of vaccines with an aim to reduce the number of doses required for primary immunization. The most common adjuvants for human use today are aluminum hydroxide and aluminum phosphate. Calcium phosphate and oil emulsions have been also used in human vaccination. The biggest issue with the use of adjuvants for human vaccines is the toxicity and adverse side effects of most of the adjuvant formulations. Other problems with the development of adjuvants include restricted adjuvanticity of certain formulations to a few antigens, use of aluminum adjuvants as reference adjuvant preparations under suboptimal conditions, non-availability of reliable animal models, use of non-standard assays and biological differences between animal models and humans leading to the failure of promising formulations to show adjuvanticity in clinical trials. The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. The aim of the present review is to put the recent findings into a broader perspective to facilitate the application of these adjuvants in general and experimental vaccinology.

Generation of a Human Monoclonal Antibody to Cross-Reactive Material 197 (CRM197) and Development of a Sandwich ELISA for CRM197 Conjugate Vaccines

  • Kim, Dain;Yoon, Hyeseon;Kim, Sangkyu;Wi, Jimin;Chae, Heesu;Jo, Gyunghee;Yoon, Jun-Yeol;Kim, Heeyoun;Lee, Chankyu;Kim, Se-Ho;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2113-2120
    • /
    • 2018
  • Cross-reactive material 197 ($CRM_{197}$) is a non-toxic mutant of diphtheria toxin containing a single amino acid substitution of glycine 52 with glutamic acid. $CRM_{197}$ has been used as a carrier protein for poorly immunogenic polysaccharide antigens to improve immune responses. In this study, to develop a sandwich ELISA that can detect $CRM_{197}$ and $CRM_{197}$ conjugate vaccines, we generated a human anti-$CRM_{197}$ monoclonal antibody (mAb) 3F9 using a phage-displayed human synthetic Fab library and produced mouse anti-$CRM_{197}$ polyclonal antibody. The affinity ($K_D$) of 3F9 for $CRM_{197}$ was 3.55 nM, based on Bio-Layer interferometry, and it bound specifically to the B fragment of $CRM_{197}$. The sandwich ELISA was carried out using 3F9 as a capture antibody and the mouse polyclonal antibody as a detection antibody. The detection limit of the sandwich ELISA was <1 ng/ml $CRM_{197}$. In addition, the 3F9 antibody bound to the $CRM_{197}$-polysaccharide conjugates tested in a dose-dependent manner. This ELISA system will be useful for the quantification and characterization of $CRM_{197}$ and $CRM_{197}$ conjugate vaccines. To our knowledge, this study is the first to generate a human monoclonal antibody against $CRM_{197}$ and to develop a sandwich ELISA for $CRM_{197}$ conjugate vaccines.

Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages

  • Pureum Lee;Chang-Ung Kim;Sang Hawn Seo ;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.4.1-4.18
    • /
    • 2021
  • The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.

Rotavirus Vaccines (로타바이러스 백신)

  • Koh, Hong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.12 no.sup1
    • /
    • pp.72-76
    • /
    • 2009
  • Rotavirus infection is the leading cause of severe diarrhea disease in infants and young children worldwide. Rotavirus infects every child at least once by her/his $5^{th}$ birthday. It has been known that single episode of rotavirus infection can protect or alleviate subsequent illness caused by both homotypic and heterotypic rotaviruses. There are two currently licensed rotavirus vaccines. One is human-bovine rotavirus reassortant pentavalent vaccine ($RotaTeq^{TM}$), which contains five reassortant rotavirus (expressing protein G1, G2, G3, G4 and P[8]) and was licensed in Korea for use among infants in 2007. Another is live-attenuated human rotavirus vaccine ($Rotarix^{TM}$) derived from 89-12 strain which represents the most common of the human rotavirus VP7(G1) and VP4(P[8]) antigens. $Rotarix^{TM}$ was licensed in Korea in 2008. Both live oral rotavirus vaccines are efficacious in preventing severe rotavirus gastroenteritis.

Ongoing Clinical Trials of Vaccines to Fight against COVID-19 Pandemic

  • Chiranjib Chakraborty;Ashish Ranjan Sharma;Manojit Bhattacharya;Garima Sharma;Rudra P. Saha;Sang-Soo Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.22
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has developed as a pandemic, and it created an outrageous effect on the current healthcare and economic system throughout the globe. To date, there is no appropriate therapeutics or vaccines against the disease. The entire human race is eagerly waiting for the development of new therapeutics or vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Efforts are being taken to develop vaccines at a rapid rate for fighting against the ongoing pandemic situation. Amongst the various vaccines under consideration, some are either in the preclinical stage or in the clinical stages of development (phase-I, -II, and -III). Even, phase-III trials are being conducted for some repurposed vaccines like Bacillus Calmette-Guérin, polio vaccine, and measles-mumps-rubella. We have highlighted the ongoing clinical trial landscape of the COVID-19 as well as repurposed vaccines. An insight into the current status of the available antigenic epitopes for SARS-CoV-2 and different types of vaccine platforms of COVID-19 vaccines has been discussed. These vaccines are highlighted throughout the world by different news agencies. Moreover, ongoing clinical trials for repurposed vaccines for COVID-19 and critical factors associated with the development of COVID-19 vaccines have also been described.

Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus

  • Wooseong Lee;Yu-Jin Kim;Su Jin Lee;Dae-Gyun Ahn;Seong-Jun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.981-991
    • /
    • 2023
  • Monkeypox (Mpox) virus, a member of the Poxviridae family, causes a severe illness similar to smallpox, which is characterized by symptoms such as high fever, rash, and pustules. Human-to-human transmission cases have been reported but remained low since the first recorded case of human infection occurred in the Congo in 1970. Recently, Mpox has re-emerged, leading to an alarming surge in infections worldwide since 2022, originating in the United Kingdom. Consequently, the World Health Organization (WHO) officially declared the '2022-23 Mpox outbreak'. Currently, no specific therapy or vaccine is available for Mpox. Therefore, patients infected with Mpox are treated using conventional therapies developed for smallpox. However, the vaccines developed for smallpox have demonstrated only partial efficacy against Mpox, allowing viral transmission among humans. In this review, we discuss the current epidemiology of the ongoing Mpox outbreak and provide an update on the progress made in diagnosis, treatment, and development of vaccines for Mpox.

Production of Hantaan Virus from Human Immortalized Retina Cell and Its Immunogenicity

  • Bae, Cheon-Soon;Choi, Jun-Youl;An, Chang-Nam;Kim, Jong-Su;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.882-889
    • /
    • 2002
  • Hantaan vims production, using human immortalized retina cell (PER. C6), was investigated to develop an inactivated virus vaccine. To infect Hantaan virus into PER. C6, two infection methods (medium-to-cell and cell-to-cell) were tried, and IFA results showed that the cell-to-cell infection method was very useful for producing Hantaan virus-infected PER, C6. Hantaan virus production was significantly affected by the growth rate of PER. C6 and the content of FBS in medium. Higher specific growth rate of infected PER. C6 and lower FBS content induced higher production of Hantaan virus. The inactivated human cell-culture vaccines with various EIA titers were prepared, their antibody responses were compared with those of inactivated suckling mouse brain vaccines ($Hantavax^처리불가$). and the result showed their immunogenicities were slightly higher than those of inactivated suckling mouse vaccines. Therefore, this study shows the possibility of the development of Hantaan virus vaccine from a human cell culture.

Statistical Consideration of Vaccine Clinical Trials (백신임상시험에 대한 통계적 고찰)

  • Nam, Ju-Sun;Kang, Seung-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.633-646
    • /
    • 2011
  • Clinical vaccines studies (that include cancer prevention vaccines and therapeutic vaccines) are ongoing to improve the quality of life and lengthen the human lifespan. Recently clinical trials and research on vaccines have become more active due to the prevalence of new viruses such as the A(H1N1) virus that freighted the whole word in 2009. In this paper we will describe the statistical aspects of clinical vaccine trials and outline the current situation of domestic and international vaccine development.