• Title/Summary/Keyword: human umbilical vein endothelial cells (HUVECs)

Search Result 144, Processing Time 0.027 seconds

Combination stem cell therapy using dental pulp stem cells and human umbilical vein endothelial cells for critical hindlimb ischemia

  • Kim, Chung Kwon;Hwang, Ji-Yoon;Hong, Tae Hee;Lee, Du Man;Lee, Kyunghoon;Nam, Hyun;Joo, Kyeung Min
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.336-341
    • /
    • 2022
  • Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.

Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Lee, Hyun-Ah;Song, Yeong-Ok;Jang, Mi-Soon;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.170-177
    • /
    • 2014
  • Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-${\kappa}B$ proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs.

Vascular Endothelial Growth Factor Upregulates Follistatin in Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10ng/L) produced an approximately 11.8-fold increase of FS mRNA. F5 or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FS in vitro.

Angiopoietin-1 Is An Radiation-induced Apoptosis Survival Factor for Human Umbilical Vein Endothelial Cells (방사선을 조사한 혈관내피세포에 대한 Angiopoietin-1의 방사선 방어 기작)

  • Lee, Song-Jae;Chang, Chae-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.166-173
    • /
    • 2000
  • Angiopoietin-1(Ang-1) is a vasculogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. We examined the effect of angiopoietin-1(Ang-1) on radiation-induced apoptosis in human umbilical vein endothelial cells(HUVECS) and receptor/second messenger signal transduction pathway for Ang-1's effect on HUVECs. The percent of apoptotic cells under control condition(0Gy) was $8.2\%$. Irradiation induced apoptosis was increased in a dose(1, 5, 10, and 15Gy)- and time 12, 24, 48 and 72hr)-dependent manner. The percent of apoptotic cells was approximately $34.9\%$ after 15 Gy of irradiation. Under these conditions, pretreatment with Ang-1's (50, 100, 200, and 400 ng/ml) inhibited irradiation-induced apoptosis in human umbilical vein endothelial cells in a dose-dependent manner. Two hundred ng/ml of Ang-1 inhibited approximately $55-60\%$ of the apoptotic events that occurred in the 10 Gy-irradiated cells. Pre-treatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang-1's antiapoptotic effects. Phosphatidylinositol 3'-kinase (P13-kinase) specific inhibitor, wortmanin and LY294002, blocked the Ang-1-induced antiapoptotic effect. Ang-1 promotes the survival of endothelial cells in irradiation-induced apoptosis through Tie2 receptor binding and P13-kinase activation. Pretreatment of Ang-1 could be beneficial in maintaining normal endothelial cell integrity during irradiation therapy.

  • PDF

Protective Effect of Padina arborescens Extract against High Glucose-induced Oxidative Damage in Human Umbilical Vein Endothelial Cells

  • Park, Mi Hwa;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Dysfunction of endothelial cells is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of Padina arborescens extract against high glucose-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). High-concentration of glucose (30 mM) treatment induced cytotoxicity whereas Padina arborescens extract protected the cells from high glucose-induced damage and significantly restored cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS), and nitric oxide (NO) levels induced by high glucose treatment were effectively inhibited by treatment of Padina arborescens extract in a dose-dependent manner. High glucose treatment also induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 (COX-2) and NF-${\kappa}B$ proteins in HUVECs, but Padina arborescens extract treatment reduced the over-expressions of these proteins. These findings indicate the potential benefits of Padina arborescens extract as a valuable source in reducing the oxidative damage induced by high glucose.

Inhibitory Activity of Edible Plant Extracts on Proliferation of Human Umbilical Vein Endothelial Cells (HUVECs)

  • Song, Myoung-Chong;Kim, Sung-Hoon;Kwak, Ho-Young;Yang, Hye-Joung;Bang, Myun-Ho;Chung, In-Sik;Lee, Youn-Hyung;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.249-253
    • /
    • 2007
  • Thirteen edible plants previously reported to show inhibitory activities on farnesyl protein transferase (FPTase) and phosphatase of the regenerating liver-3 (PRL-3) were evaluated for inhibitory activity on the proliferation of human umbilical vein endothelial cells (HUVECs). Four plant extracts, Oenothera erythrosepala, Perilla frutescens, Panicum miliaceum, and Quercus acutissima, significantly inhibited the proliferation of HUVECs induced by the basic fibroblast growth factor (bFGF) without cytotoxicity at 100 ${\mu}g/mL$. Myristica fragrans, Rosmarinus officinalis, and Syringa patula also showed inhibitory activity on the proliferation with only mild cytotoxicity.

Effect of Polyopes lancifolia Extract on Oxidative Stress in Human Umbilical Vein Endothelial Cells Induced by High Glucose

  • Min, Seong Won;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • The protective effect of Polyopes lancifolia extract on high glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs). High concentration of glucose (30 mM) treatment induced HUVECs cell death, but Polyopes lancifolia extract, at concentrations of 25, 50, and $100{\mu}g/mL$, protected cells from high glucose-induced damage. Furthermore, thiobarbituric acid reactive substances, intracellular reactive oxygen species, and nitric oxide levels increased by high glucose treatment were effectively decreased by treatment with Polyopes lancifolia extract in a dose-dependent manner. Also, Polyopes lancifolia extract treatment reduced the overexpressions of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B proteins activation that was induced by high glucose in HUVECs. These results indicate that Polyopes lancifolia extract is a potential therapeutic material that will reduce the damage caused by high glucose-induced-oxidative stress associated with diabetes.

Zerumbone, Sesquiterpene Photochemical from Ginger, Inhibits Angiogenesis

  • Park, Ju-Hyung;Park, Geun Mook;Kim, Jin-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.335-340
    • /
    • 2015
  • Here, we investigated the role of zerumbone, a natural cyclic sesquiterpene of Zingiber zerumbet Smith, on angiogenesis using human umbilical vein endothelial cells (HUVECs). Zerumbone inhibited HUVECs proliferation, migration and tubule formation, as well as angiogenic activity by rat aorta explants. In particular, zerumbone inhibited phosphorylation of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1, which are key regulators of endothelial cell function and angiogenesis. In vivo matrigel plug assay in mice demonstrated significant decrease in vascularization and hemoglobin content in the plugs from zerumbone-treated mice, compared with control mice. Overall, these results suggest that zerumbone inhibits various attributes of angiogenesis, which might contribute to its reported antitumor effects.

Growth Inhibition and Apoptosis Induction of Human Umbilical Vein Endothelial Cells by Apogossypolone

  • Zhan, Yong-Hua;Huang, Xiao-Feng;Hu, Xing-Bin;An, Qun-Xing;Liu, Zhi-Xin;Zhang, Xian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1791-1795
    • /
    • 2013
  • Aims and Background: Prostate cancer is one of the most common malignant tumors in the male reproductive system, which causes the second most cancer deaths of males, and control of angiogenesis in prostate lesions is of obvious importance. This study assessed the effect of apogossypolone (ApoG2) on proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs). Subjects and Methods: HUVECs were treated with different concentrations of ApoG2. The survival rate of HUVECs were determined by MTT assay. Utrastructural changes of HUVECs were assessed with transmission electron microscopy. Apoptosis in HUVECs was analyzed by flow cytometry and cell migration by Boyden chamber assay. Matrigel assays were used to quantify the development of tube-like networks. Results: ApoG2 significantly inhibited HUVEC growth even at 24 h (P<0.05). The inhibitory effect of ApoG2 is more obvious as the concentration and the culture time increased (P<0.05). These results indicate that ApoG2 inhibits the proliferation of HUVECs in a time- and concentration-dependent manner with increase of the apoptosis rate. Besides, ApoG2 reduced the formation of total pseudotubule length and network branches of HUVECs. Conclusions: The results suggest that ApoG2 inhibits angiogenesis of HUVECs by growth inhibition and apoptosis induction.

Hot water extract of Loliolus beka attenuates methylglyoxal-induced advanced glycation end products formation in human umbilical vein endothelial cells

  • Cha, Seon-Heui;Jun, Hee-Sook
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.10
    • /
    • pp.517-524
    • /
    • 2022
  • Over production of methylglyoxal (MGO) a highly reactive dicarbonyl compound, has been associated in progressive diabetes with vascular complication. Therefore, we investigated whether hot water extract of Loliolus beka meat (LBM-HWE) presents a preserve effect against MGO-induced cellular damage in human umbilical vein endothelial cells (HUVECs). The LBM-HWE extract showed to inhibit MGO-induced cytotoxicity. Additionally, the LBM-HWE reduced mRNA expression of pro-inflammatory cytokines, and reduced MGO-induced advanced glycation end product (AGEs) formation. Furthermore, LBM-HWE induced glyoxalase-1 mRNA expression and reduced MGO-induced carbonyl protein formation in HUVECs. The results implicate that LBM-HWE has protective ability against MGO-induced HUVECs toxicity by preventing AGEs formation. In conclusion, LBM-HWE could be used as a potential treatment material for the prevention of vascular complications of diabetes.