• Title/Summary/Keyword: human tumour cells

Search Result 35, Processing Time 0.024 seconds

Tumour-Derived Reg3A Educates Dendritic Cells to Promote Pancreatic Cancer Progression

  • Guo, Jie;Liao, Mengfan;Hu, Xianmin;Wang, Jun
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.647-657
    • /
    • 2021
  • As a pancreatic inflammatory marker, regenerating islet-derived protein 3A (Reg3A) plays a key role in inflammation-associated pancreatic carcinogenesis by promoting cell proliferation, inhibiting apoptosis, and regulating cancer cell migration and invasion. This study aimed to reveal a novel immuno-regulatory mechanism by which Reg3A modulates tumour-promoting responses during pancreatic cancer (PC) progression. In an in vitro Transwell system that allowed the direct co-culture of human peripheral blood-derived dendritic cells (DCs) and Reg3A-overexpressing/ silenced human PC cells, PC cell-derived Reg3A was found to downregulate CD80, CD83 and CD86 expression on educated DCs, increase DC endocytic function, inhibit DC-induced T lymphocyte proliferation, reduce IL-12p70 production, and enhance IL-23 production by DCs. The positive effect of tumour-derived Reg3A-educated human DCs on PC progression was demonstrated in vivo by intraperitoneally transferring them into PC-implanted severe combined immunodeficiency (SCID) mice reconstituted with human T cells. A Reg3A-JAK2/STAT3 positive feedback loop was identified in DCs educated with Reg3A. In conclusion, as a tumour-derived factor, Reg3A acted to block the differentiation and maturation of the most important antigen-presenting cells, DCs, causing them to limit their potential anti-tumour responses, thus facilitating PC escape and progression.

Tumour Suppressor Mechanisms in the Control of Chromosome Stability: Insights from BRCA2

  • Venkitaraman, Ashok R.
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.95-99
    • /
    • 2014
  • Cancer is unique amongst human diseases in that its cellular manifestations arise and evolve through the acquisition of somatic alterations in the genome. In particular, instability in the number and structure of chromosomes is a near-universal feature of the genomic alterations associated with epithelial cancers, and is triggered by the inactivation of tumour suppressor mechanisms that preserve chromosome integrity in normal cells. The nature of these mechanisms, and how their inactivation promotes carcinogenesis, remains enigmatic. I will review recent work from our laboratory on the tumour suppressor BRCA2 that addresses these issues, focusing on new insights into cancer pathogenesis and therapy that are emerging from improved understanding of the molecular basis of chromosomal instability in BRCA2-deficient cancer cells.

Human Embryonic Stem Cells - a Potential Vaccine for Ovarian Cancer

  • Zhang, Zu-Juan;Chen, Xin-Hua;Chang, Xiao-Hong;Ye, Xue;Li, Yi;Cui, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4295-4300
    • /
    • 2012
  • Objective: To investigate the therapeutic potential of human embryonic stem cells (hESCs) as a vaccine to induce an immune response and provide antitumor protection in a rat model. Methods: Cross-reactivity of antigens between hESCs and tumour cells was screened by immunohistochemistry. Fischer 344 rats were divided into 7 groups, with 6 rats in each, immunized with: Group 1, hESC; Group 2, pre-inactivated mitotic NuTu-19; Group 3 PBS; Group 4, hESC; Group 5, pre-inactivated mitotic NuTu-19; Group 6, PBS; Group 7, hESC only. At 1 (Groups 1-3) or 4 weeks (Groups 4-6) after the last vaccination, each rat was challenged intraperitoneally with NuTu-19. Tumor growth and animal survival were closely monitored. Rats immunized with H9 and NuTu-19 were tested by Western blot analysis of rat orbital venous blood for cytokines produced by Th1 and Th2 cells. Results: hESCs presented tumour antigens, markers, and genes related to tumour growth, metastasis, and signal pathway interactions. The vaccine administered to rats in Group 1 led to significant antitumor responses and enhanced tumor rejection in rats with intraperitoneal inoculation of NuTu-19 cells compared to control groups. In contrast, rats in Group 4 did not display any elevation of antitumour responses. Western blot analysis found cross-reactivity among antibodies generated between H9 and NuTu-19. However, the cytokines did not show significant differences, and no side effects were detected. Conclusion: hESC-based vaccination is a promising modality for immunotherapy of ovarian cancer.

Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b

  • Cichello, Simon Angelo;Yao, Qian;Dowell, Ashley;Leury, Brian;He, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4781-4786
    • /
    • 2015
  • Siberian ginseng (Eleutherococcus senticosus) is used primarily as an adaptogen herb and also for its immune stimulant properties in Western herbal medicine. Another closely related species used in East Asian medicine systems i.e. Kampo, TCM (Manchuria, Korea, Japan and Ainu of Hokkaido) and also called Siberian ginseng (Acanthopanax senticosus) also displays immune-stimulant and anti-cancer properties. These may affect tumour growth and also provide an anti-fatigue effect for cancer patients, in particular for those suffering from lung cancer. There is some evidence that a carbohydrate in Siberian ginseng may possess not only immune stimulatory but also anti-tumour effects and also display other various anti-cancer properties. Our study aimed to determine the inhibitory and also proliferative effects of a methanol plant extract of Siberan ginseng (E. senticosus) on various cancer and normal cell lines including: A-549 (small cell lung cancer), XWLC-05 (Yunnan lung cancer cell line), CNE (human nasopharyngeal carcinoma cell line), HCT-116 (human colon cancer) and Beas-2b (human lung epithelial). These cell lines were treated with an extract from E. senticosus that was evaporated and reconstituted in DMSO. Treatment of A-549 (small cell lung cancer) cells with E. senticosus methanolic extract showed a concentration-dependent inhibitory trend from $12.5-50{\mu}g/mL$, and then a plateau, whereas at 12.5 and $25{\mu}g/mL$, there is a slight growth suppression in QBC-939 cells, but then a steady suppression from 50, 100 and $200{\mu}g/mL$. Further, in XWLC-05 (Yunnan lung cancer cell line), E. senticosus methanolic extract displayed an inhibitory effect which plateaued with increasing dosage. Next, in CNE (human nasopharyngeal carcinoma cell line) there was a dose dependent proliferative response, whereas in Beas-2 (human lung epithelial cell line), an inhibitory effect. Finally in colon cancer cell line (HCT-116) we observed an initially weak inhibitory effect and then plateau.

Breastfeeding and its Relationship with Reduction of Breast Cancer: A Review

  • Franca-Botelho, Aline Do Carmo;Ferreira, Marina Carvalho;Franca, Juliana Luzia;Franca, Eduardo Luzia;Honorio-Franca, Adenilda Cristina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5327-5332
    • /
    • 2012
  • In this review, we describe the patterns of known immunological components in breast milk and examine the relationship between breastfeeding and reduced risk of breast cancer. The top risk factors for breast cancer are a woman's age and family history, specifically having a first-degree relative with breast cancer. Women that have a history of breastfeeding have been shown to have reduced rates of breast cancer. Although the specific cause has not been elucidated, previous studies have suggested that breastfeeding reduces the risk of breast cancer primarily through two mechanisms: the differentiation of breast tissue and reduction in the lifetime number of ovulatory cycles. In this context, one of the primary components of human milk that is postulated to affect cancer risk is alpha-lactalbumin. Tumour cell death can be induced by HAMLET (a human milk complex of alpha-lactalbumin and oleic acid). HAMLET induces apoptosis only in tumour cells, while normal differentiated cells are resistant to its effects. Therefore, HAMLET may provide safe and effective protection against the development of breast cancer. Mothers should be encouraged to breastfeed their babies because the complex components of human milk secretion make it an ideal food source for babies and clinical evidence has shown that there is a lower risk of breast cancer in women who breastfed their babies.

PRP4 Kinase Domain Loss Nullifies Drug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells

  • Ahmed, Muhammad Bilal;Islam, Salman Ul;Sonn, Jong Kyung;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.662-670
    • /
    • 2020
  • We have investigated the involvement of the pre-mRNA processing factor 4B (PRP4) kinase domain in mediating drug resistance. HCT116 cells were treated with curcumin, and apoptosis was assessed based on flow cytometry and the generation of reactive oxygen species (ROS). Cells were then transfected with PRP4 or pre-mRNA-processing-splicing factor 8 (PRP8), and drug resistance was analyzed both in vitro and in vivo. Furthermore, we deleted the kinase domain in PRP4 using Gateway™ technology. Curcumin induced cell death through the production of ROS and decreased the activation of survival signals, but PRP4 overexpression reversed the curcumin-induced oxidative stress and apoptosis. PRP8 failed to reverse the curcumin-induced apoptosis in the HCT116 colon cancer cell line. In xenograft mouse model experiments, curcumin effectively reduced tumour size whereas PRP4 conferred resistance to curcumin, which was evident from increasing tumour size, while PRP8 failed to regulate the curcumin action. PRP4 overexpression altered the morphology, rearranged the actin cytoskeleton, triggered epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116 cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRP4. Moreover, we observed that the EMT-inducing potential of PRP4 was aborted after the deletion of its kinase domain. Collectively, our investigations suggest that the PRP4 kinase domain is responsible for promoting drug resistance to curcumin by inducing EMT. Further evaluation of PRP4-induced inhibition of cell death and PRP4 kinase domain interactions with various other proteins might lead to the development of novel approaches for overcoming drug resistance in patients with colon cancer.

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Dihydroartemisinine Enhances Dictamnine-induced Apoptosis via a Caspase Dependent Pathway in Human Lung Adenocarcinoma A549 Cells

  • An, Fu-Fei;Liu, Yuan-Chong;Zhang, Wei-Wei;Liang, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5895-5900
    • /
    • 2013
  • Dictamnine (Dic) has the ability to exert cytotoxicity in human cervix, colon, and oral carcinoma cells and dihydroartemisinin (DHA) also has potent anticancer activity on various tumour cell lines. This report explores the molecular mechanisms by which Dic treatment and combination treatment with DHA and Dic cause apoptosis in human lung adenocarcinoma A549 cells. Dic treatment induced concentration- and time-dependent cell death. FCM analysis showed that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which loss of mitochondrial membrane potential (${\Delta}{\Psi}m$) was not involved. In addition, inhibition of caspase-3 using the specific inhibitor, z-DQMD-fmk, did not attenuate Dic-induced apoptosis, implying that Dic-induced caspase-3-independent apoptosis. Combination treatment with DHA and Dic dramatically increased the apoptotic cell death compared to Dic alone. Interestingly, pretreatment with z-DQMD-fmk significantly attenuated DHA and Dic co-induced apoptosis, implying that caspase-3 plays an important role in Dic and DHA co-induced cell apoptosis. Collectively, we found that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which mitochondria and caspase were not involved and DHA enhanced Dic induced A549 cell apoptosis via a caspase-dependent pathway.

Paris polyphylla Smith Extract Induces Apoptosis and Activates Cancer Suppressor Gene Connexin26 Expression

  • Li, Fu-Rong;Jiao, Peng;Yao, Shu-Tong;Sang, Hui;Qin, Shu-Cun;Zhang, Wei;Zhang, Ya-Bin;Gao, Lin-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.205-209
    • /
    • 2012
  • Background: The inhibition of tumor cell growth without toxicity to normal cells is an important target in cancer therapy. One possible way to increase the efficacy of anticancer drugs and to decrease toxicity or side effects is to develop traditional natural products, especially from medicinal plants. Paris polyphylla Smith has shown anti-tumour effects by inhibition of tumor promotion and inducement of tumor cell apoptosis, but mechanisms are still not well understood. The present study was to explore the effect of Paris polyphylla Smith extract (PPSE) on connexin26 and growth control in human esophageal cancer ECA109 cells. Methods: The effects of PPSE on Connexin26 were examined by RT-PCR, western blot and immunofluorescence; cell growth and proliferation were examined by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Results: PPSE inhibited the growth and proliferation on esophageal cancer ECA109 cells, while increasing the expression of connexin26 mRNA and protein; conversely, PPSE decreased Bcl-2 and increased Bad. Conclusion: This study firstly shows that PPSE can increase connexin26 expression at mRNA and protein level, exerting anti-tumour effects on esophageal cacner ECA109 cells via inhibiting cell proliferation and inducing cell apoptosis.

Genistein Reinforces the Inhibitory Effect of Cisplatin on Liver Cancer Recurrence and Metastasis after Curative Hepatectomy

  • Chen, Peng;Hu, Ming-Dao;Deng, Xiao-Fan;Li, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.759-764
    • /
    • 2013
  • Background: The high recurrence rate after hepatic resection in hepatocellular carcinoma (HCC) is a major obstacle to improving prognosis. The objective of the present study was to explore the function of genistein, a soy-derived isoflavone, in enhancing the inhibitory effect of cisplatin on HCC cell proliferation and on tumor recurrence and metastasis in nude mice after curative hepatectomy. Methods: Proliferation of human HCC cells (HCCLM3) was detected by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. Synergistic effects of genistein and cisplatin were evaluated with the median-effect formula. Nude mice bearing human HCC xenografts underwent tumour resection (hepatectomy) 10 days post implantation, then received intraperitoneal administration of genistein or cisplatin alone or the combination of the two drugs. 33 days after surgery, recurrent tumours and pulmonary metastasis were evaluated individually. MMP-2 level in recurrent tumours was detected by immunohistochemistry and real-time PCR; MMP-2 expression in HCCLM3 was detected by immunocytochemistry. Results: Genistein and cisplatin both suppressed the growth and proliferation of HCCLM3 cells. The two drugs exhibited synergistic effects even at relatively low concentrations. In vivo, mice in the combined genistein and cisplatin group had a smaller volume of liver recurrent tumors and fewer pulmonary metastatic foci compared with single drug treated groups. Cisplatin upregulated the expression of MMP-2 in both recurrent tumours and HCCLM3, while genistein abolished cisplatin-induced MMP-2 expression. Conclusions: Genistein reinforced the inhibitory effect of cisplatin on HCC cell proliferation and tumour recurrence and metastasis after curative hepatectomy in nude mice, possibly through mitigation of cisplatin-induced MMP-2 upregulation.