• Title/Summary/Keyword: human tumor necrosis factor-alpha

Search Result 350, Processing Time 0.028 seconds

Can herbal drug(s) meet the challenges of genomewide screen results on rheumatoid arthritis

  • Paul, Bholanath
    • Advances in Traditional Medicine
    • /
    • v.5 no.4
    • /
    • pp.251-261
    • /
    • 2005
  • Rheumatoid arthritis (RA) is an autoimmune/inflammatory disorder with a complex genetic component. RA is characterized by chronic inflammation of the synovial membrane in the joint, which leads to the progressive destruction of articular cartilage, ligament and bone. Several cytokines such as tumor necrosis $factor-{\alpha}\;TNF-{\alpha}\;and\;interleukin-1{\beta}\;(IL-1{\beta})$ and interleukin-6 (IL-6) have been implicated in the pathological mechanisms of synovial tissue proliferation, joint destruction and programmed cell death in rheumatoid joint. Genome wide screening of subjects suffering from autoimmune diseases especially arthritis revealed linkage to inflammatory molecules like $TNF-{\alpha},\;IL-1{\beta}$ and IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappaB $(NF-{\kappa}B)$ and human leucocyte antigen/major histocompatibility complex (HLA/MHC) locus. The status of the pharmacological mechanism of herbal drugs in the light of genome wide screening results has been discussed to reinforce the therapeutic potential and the pharmacological basis of the herbal drugs.

iRhoms; Its Functions and Essential Roles

  • Lee, Min-Young;Nam, Ki-Hoan;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.

Anti-inflammatory effect of Salviae Miltiorrhizae Radix (단삼 (Salviae Miltiorrhizae Radix) 메탄올 추출물의 항염증 효과)

  • Yun, Hyun-Jeong;Heo, Sook-Kyoung;Yun, Hyung-Joong;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.65-73
    • /
    • 2007
  • Objective : Salvia miltiorrhiza Bunge (Labiatae) (SM), an eminent herbal plant, has been widely used in traditional Chinese medicine for the treatment of vascular diseases such as hypertension. The aim of this study was to determine whether SM inhibits production of nitrite, an index of NO, and proinflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. And this study investigated whether or not SM could reduce tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced inflammatory response in human vascular aortic smooth muscle cells (HASMC) and umbilical vein endothelial cells (HUVEC). Methods : Cytotoxic activity of SM on RAW 264.7 cells was using 5-(3-caroboxymeth-oxy phenyJ)-2H-tetra-zolium inner salt (MTS) assay. We measured the NO production using Griess Reagent System. Production of Proliflammatory cytokines was measured by Enzyme-Linked Immunosorbent Assay (ELISA). Results : Our results indicated that SM significantly inhibited the LPS-induced NO production accompanied by an attenuation of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), IL-6 and monocyte chemoattractant protein (MCP)-1 formation in macrophages. SM decreased TNF-${\alpha}$-induced IL-8, IL-6 production, and intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression. Conclusion : These results indicate that SM has potential as an anti-inflammatory agent.

  • PDF

Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages

  • Choi, Myungwon;Ju, Jaehyun;Suh, Jae Soo;Park, Kun-Young;Kim, Kwang Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-${\alpha}$, interleukin-(IL)-$1{\beta}$, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-$1{\beta}$, TNF-${\alpha}$, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-${\alpha}$, IL-$1{\beta}$, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-$1{\beta}$, TNF-${\alpha}$, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated.

Inhibitory effect of Lonicera Japonica on trypsin-induced inflammatory mediator secretion from human leukemic mast cells

  • Kang, Ok-Hwa;Kim, Jin-Ah;Baek, Ok-Seon;Lee, Young-Mi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.254.2-254.2
    • /
    • 2002
  • Mast cells play an important role in inflammation by functioning as a source of histamine, tryptase, and proinflammatory cytokines. Lonicera Japonica (Caprifoliaceae. Lc) has been used to treat inflammation. We investigated whether the water extract of Lonicera Japonica(Lc) inhibit production of inflammatory mediators such as tryptase and tumor-necrosis factor (TNF)-${\alpha}$, and phosphorylation of extracellular signal-regulated kinase(ERK) in trypsin-stimulated HMC-1. (omitted)

  • PDF

Anti-inflammatory Effects of Quercetin and Vitexin on Activated Human Peripheral Blood Neutrophils - The effects of quercetin and vitexin on human neutrophils -

  • Nikfarjam, Bahareh Abd;Hajiali, Farid;Adineh, Mohtaram;Nassiri-Asl, Marjan
    • Journal of Pharmacopuncture
    • /
    • v.20 no.2
    • /
    • pp.127-131
    • /
    • 2017
  • Objectives: Polymorphonuclear neutrophils (PMNs) constitute the first line of defense against invading microbial pathogens. Early events in inflammation involve the recruitment of neutrophils to the site of injury or damage where changes in intracellular calcium can cause the activation of pro-inflammatory mediators from neutrophils including superoxide generation, degranulation and release of myeloperoxidase (MPO), productions of interleukin (IL)-8 and tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), and adhesion to the vascular endothelium. To address the anti-inflammatory role of flavonoids, in the present study, we investigated the effects of the flavonoids quercetin and vitexin on the stimulus-induced nitric oxide (NO), $TNF-{\alpha}$, and MPO productions in human neutrophils. Methods: Human peripheral blood neutrophils were isolated, and their viabilities were determined by using the Trypan Blue exclusion test. The polymorphonuclear leukocyte (PMNL) preparations contained more than 98% neutrophils as determined by morphological examination with Giemsa staining. The viabilities of cultured neutrophils with various concentrations of quercetin and vitexin ($1-100{\mu}M$) were studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI) medium, pre-incubated with or without quercetin and vitexin ($25{\mu}M$) for 45 min, and stimulated with phorbol 12-myristate 13-acetate (PMA) ($10^{-7}M$). NO production was carried out through nitrite determination by using the Griess method. Also, the $TNF-{\alpha}$ and the MPO productions were measured using enzyme-linked immunosorbent assay (ELISA) kits and MPO assay kits. Results: Neutrophil viability was not affected up to a concentration of $100{\mu}M$ of quercetin or vitexin. Both quercetin and vitexin significantly inhibited $TNF-{\alpha}$, NO, and MPO productions in human neutrophils (P < 0.001). Conclusion:The present study showed that both quercetin and vitexin had significant anti-inflammatory effects. Thus, treatment with either quercetin or vitexin may be considered as a therapeutic strategy for treating patients with neutrophil-mediated inflammatory diseases.

Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases - Anti-inflammatory Effects of Rutin on Neutrophils -

  • Nikfarjam, Bahareh Abd;Adineh, Mohtaram;Hajiali, Farid;Nassiri-Asl, Marjan
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.52-56
    • /
    • 2017
  • Objectives: Neutrophils represent the front line of human defense against infections. Immediately after stimulation, neutrophilic enzymes are activated and produce toxic mediators such as pro-inflammatory cytokines, nitric oxide (NO) and myeloperoxidase (MPO). These mediators can be toxic not only to infectious agents but also to host tissues. Because flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of inflammation. In the present study, the effects of rutin on stimulus-induced NO and tumor necrosis factor $(TNF)-{\alpha}$ productions and MPO activity in human neutrophils were investigated. Methods: Human peripheral blood neutrophils were isolated using Ficoll-Hypaque density gradient centrifugation coupled with dextran T500 sedimentation. The cell preparations containing > 98% granulocytes were determined by morphological examination through Giemsa staining. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI) medium, pre-incubated with or without rutin ($25{\mu}M$) for 45 minutes, and stimulated with phorbol 12-myristate 13-acetate (PMA). Then, the $TNF-{\alpha}$, NO and MPO productions were analyzed using enzyme-linked immunosorbent assay (ELISA), Griess Reagent, and MPO assay kits, respectively. Also, the viability of human neutrophils was assessed using tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and neutrophils were treated with various concentrations of rutin ($1-100{\mu}M$), after which MTT was appended and incubated at $37^{\circ}C$ for 4 hour. Results: Rutin at concentrations up to $100{\mu}M$ did not affect neutrophil viability during the 4-hour incubation period. Rutin significantly decreased the NO and $TNF-{\alpha}$ productions in human peripheral blood neutrophils compared to PMA-control cells (P < 0.001). Also, MPO activity was significantly reduced by rutin (P < 0.001). Conclusion: In this in vitro study, rutin had an anti-inflammatory effect due to its inhibiting NO and $TNF-{\alpha}$ productions, as well as MPO activity, in activated human neutrophils. Treatment with rutin may be considered as a therapeutic strategy for neutrophil-mediated inflammatory/autoimmune diseases.

Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2

  • Yu, Tao;Yang, Yanyan;Kwak, Yi-Seong;Song, Gwan Gyu;Kim, Mi-Yeon;Rhee, Man Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2017
  • Background: Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng, a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. Methods: The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis $factor-{\alpha}/interferon-{\gamma}-treated$ synovial cells, and HEK293 cells transfected with various inducers of inflammation. Results: G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$. G-Rc also markedly suppressed the activation of TANK-binding kinase $1/I{\kappa}B$ kinase ${\varepsilon}/interferon$ regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. Conclusion: G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase $1/I{\kappa}B$ kinase ${\varepsilon}/interferon$ regulatory factor-3 and p38/ATF-2 signaling.

Vitamin C Blocks TNF-${\alpha}$-induced NF-kB Activation and ICAM-1 Expression in Human Neuroblastoma Cells

  • Son, Eun-Wha;Mo, Sung-Ji;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1073-1079
    • /
    • 2004
  • Interactions of the cell adhesion molecules are known to play important roles in mediating inflammation. The proinflammatory cytokine, tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), activates the NF-kB signaling pathway, which induces the expression of various genes, such as intercellular adhesion molecule-1 (ICAM-1). In this study, the effect of vitamin C on the ICAM-1 expression induced by TNF-${\alpha}$ in a human neuroblastoma cell line, SK-N-SH was investigated. Treatment with vitamin C resulted in the downregulation of the TNF-${\alpha}$-induced surface expression and ICAM-1 mRNA levels in a concentration-dependent manner. Moreover, a gel shift analysis indicated that vitamin C dose-dependently inhibited the NF-kB activation and IkB${\alpha}$ degradation induced by TNF-${\alpha}$. Taken together, these results suggest that vitamin C downregulates TNF-${\alpha}$- induced ICAM-1 expression via the inhibition of NF-kB activation.

The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities

  • I Nyoman Semita;Dwikora Novembri Utomo;Heri Suroto;I Ketut Sudiana;Parama Gandi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.72-83
    • /
    • 2023
  • Background: Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods: A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results: The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions: The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.