Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.149

iRhoms; Its Functions and Essential Roles  

Lee, Min-Young (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Nam, Ki-Hoan (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Choi, Kyung-Chul (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.24, no.2, 2016 , pp. 109-114 More about this Journal
Abstract
In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.
Keywords
iRhom1; iRhom2; TNF-${\alpha}$; TACE; EGFR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Siggs, O. M., Xiao, N., Wang, Y., Shi, H., Tomisato, W., Li, X., Xia, Y. and Beutler, B. (2012) iRhom2 is required for the secretion of mouse $TNF{\alpha}$. Blood 119, 5769-5771.   DOI
2 Sturtevant, M. A., Roark, M. and Bier, E. (1993) The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 7, 961-973.   DOI
3 Urban, S. and Dickey, S. W. (2011) The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol. 12, 231.   DOI
4 Urban, S., Lee, J. R. and Freeman, M. (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182.   DOI
5 Urban, S., Schlieper, D. and Freeman, M. (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507-1512.   DOI
6 Urban, S. and Wolfe, M. S. (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 1883-1888.   DOI
7 Wasserman, J. D., Urban, S. and Freeman, M. (2000) A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev. 14, 1651-1663.
8 Wojnarowicz, P. M., Provencher, D. M., Mes-Masson, A. M. and Tonin, P. N. (2012) Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer. Int. J. Oncol. 40, 1865-1880.
9 Yan, Z., Zou, H., Tian, F., Grandis, J. R., Mixson, A. J., Lu, P. Y. and Li, L. Y. (2008) Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol. Cancer Ther. 7, 1355-1364.   DOI
10 Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. and Freeman, M. (2011) Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79-91.   DOI
11 Zou, H., Thomas, S. M., Yan, Z. W., Grandis, J. R., Vogt, A. and Li, L. Y. (2009) Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 23, 425-432.   DOI
12 Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733.   DOI
13 Abbruzzese, C., Mattarocci, S., Pizzuti, L., Mileo, A. M., Visca, P., Antoniani, B., Alessandrini, G., Facciolo, F., Amato, R., D'Antona, L., Rinaldi, M., Felsani, A., Perrotti, N. and Paggi, M. G. (2012) Determination of SGK1 mRNA in non-small cell lung cancer samples underlines high expression in squamous cell carcinomas. J. Exp. Clin. Cancer Res. 31, 4.   DOI
14 Adrain, C., Strisovsky, K., Zettl, M., Hu, L., Lemberg, M. K. and Freeman, M. (2011) Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 12, 421-427.   DOI
15 Adrain, C., Zettl, M., Christova, Y., Taylor, N. and Freeman, M. (2012) Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225-228.   DOI
16 Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., Leproust, E. M., McManus, M. T. and Weissman, J. S. (2013) A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909-922.   DOI
17 Bergbold, N. and Lemberg, M. K. (2013) Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim. Biophys. Acta 1828, 2840-2848.   DOI
18 Blaydon, D. C., Etheridge, S. L., Risk, J. M., Hennies, H. C., Gay, L. J., Carroll, R., Plagnol, V., McRonald, F. E., Stevens, H. P., Spurr, N. K., Bishop, D. T., Ellis, A., Jankowski, J., Field, J. K., Leigh, I. M., South, A. P. and Kelsell, D. P. (2012) RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet 90, 340-346.   DOI
19 Blobel, C. P. (2005) ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32-43.   DOI
20 Brooke, M. A., Etheridge, S. L., Kaplan, N., Simpson, C., O'Toole, E. A., Ishida-Yamamoto, A., Marches, O., Getsios, S. and Kelsell, D. P. (2014) iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function. Hum. Mol. Genet. 23, 4064-4076.   DOI
21 Buckland, J. (2013) Experimental arthritis: Antihistamines as treatments for autoimmune disease? Nat. Rev. Rheumatol. 9, 696.
22 Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., Gavin, O. L., Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E. L., Eddy, S. R. and Bateman, A. (2010) The Pfam protein families database. Nucleic Acids Res. 38, D211-D222.   DOI
23 Christova, Y., Adrain, C., Bambrough, P., Ibrahim, A. and Freeman, M. (2013) Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep. 14, 884-890.   DOI
24 De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., Eaton, M. L., Keenan, B. T., Ernst, J., McCabe, C., Tang, A., Raj, T., Replogle, J., Brodeur, W., Gabriel, S., Chai, H. S., Younkin, C., Younkin, S. G., Zou, F., Szyf, M., Epstein, C. B., Schneider, J. A., Bernstein, B. E., Meissner, A., Ertekin-Taner, N., Chibnik, L. B., Kellis, M., Mill, J. and Bennett, D. A. (2014) Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156-1163.   DOI
25 Etheridge, S. L., Brooke, M. A., Kelsell, D. P. and Blaydon, D. C. (2013) Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res. 351, 301-307.   DOI
26 Fleig, L., Bergbold, N., Sahasrabudhe, P., Geiger, B., Kaltak, L. and Lemberg, M. K. (2012) Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47, 558-569.   DOI
27 Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167.   DOI
28 Freeman, M. (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev. 48, 25-33.   DOI
29 Ha, Y., Akiyama, Y. and Xue, Y. (2013) Structure and mechanism of rhomboid protease. J. Biol. Chem. 288, 15430-15436.   DOI
30 Freeman, M. (2014) The rhomboid-like superfamily: molecular mechanisms and biological roles. Annu. Rev. Cell Dev. Biol. 30, 235-254.   DOI
31 Haglund, K. and Dikic, I. (2012) The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265-275.   DOI
32 Hall, K. C. and Blobel, C. P. (2012) Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One 7, e31600.   DOI
33 Haxaire, C. and Blobel, C. P. (2014) With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFalpha-convertase-dependent release of TNFalpha contribute to haemophilic arthropathy? Haemophilia 20 Suppl 4, 11-14.   DOI
34 Hosur, V., Johnson, K. R., Burzenski, L. M., Stearns, T. M., Maser, R. S. and Shultz, L. D. (2014) Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin. Proc. Natl. Acad.Sci. U.S.A. 111, E2200-E2209.   DOI
35 Issuree, P. D., Maretzky, T., McIlwain, D. R., Monette, S., Qing, X., Lang, P. A., Swendeman, S. L., Park-Min, K. H., Binder, N., Kalliolias, G. D., Yarilina, A., Horiuchi, K., Ivashkiv, L. B., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2013) iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest. 123, 928-932.
36 Koonin, E. V., Makarova, K. S., Rogozin, I. B., Davidovic, L., Letellier, M. C. and Pellegrini, L. (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19.   DOI
37 Li, X., Maretzky, T., Weskamp, G., Monette, S., Qing, X., Issuree, P. D., Crawford, H. C., McIlwain, D. R., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2015) iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. U.S.A. 112, 6080-6085.   DOI
38 Lemberg, M. K. (2013) Sampling the membrane: function of rhomboidfamily proteins. Trends Cell Biol. 23, 210-217.   DOI
39 Lemberg, M. K. and Freeman, M. (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634-1646.   DOI
40 Lemberg, M. K., Menendez, J., Misik, A., Garcia, M., Koth, C. M. and Freeman, M. (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464-472.   DOI
41 Liao, H. J. and Carpenter, G. (2012) Regulated intramembrane cleavage of the EGF receptor. Traffic 13, 1106-1112.   DOI
42 Lichtenthaler, S. F. (2013) iRHOM2 takes control of rheumatoid arthritis. J. Clin. Invest. 123, 560-562.
43 Lisi, S., D'Amore, M. and Sisto, M. (2014) ADAM17 at the interface between inflammation and autoimmunity. Immunol. Lett. 162, 159-169.   DOI
44 Lui, V. W., Thomas, S. M., Zhang, Q., Wentzel, A. L., Siegfried, J. M., Li, J. Y. and Grandis, J. R. (2003) Mitogenic effects of gastrin-releasing peptide in head and neck squamous cancer cells are mediated by activation of the epidermal growth factor receptor. Oncogene 22, 6183-6193.   DOI
45 Nakagawa, T., Guichard, A., Castro, C. P., Xiao, Y., Rizen, M., Zhang, H. Z., Hu, D., Bang, A., Helms, J., Bier, E. and Derynck, R. (2005) Characterization of a human rhomboid homolog, p100hRho/RHBDF1, which interacts with TGF-alpha family ligands. Dev. Dyn. 233, 1315-1331.   DOI
46 Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., Troakes, C., Al-Sarraj, S., Burrage, J., Macdonald, R., Condliffe, D., Harries, L. W., Katsel, P., Haroutunian, V., Kaminsky, Z., Joachim, C., Powell, J., Lovestone, S., Bennett, D. A., Schalkwyk, L. C. and Mill, J. (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat. Neurosci. 17, 1164-1170.   DOI
47 Maretzky, T., McIlwain, D. R., Issuree, P. D., Li, X., Malapeira, J., Amin, S., Lang, P. A., Mak, T. W. and Blobel, C. P. (2013) iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl. Acad. Sci. U.S.A. 110, 11433-11438.   DOI
48 McIlwain, D. R., Lang, P. A., Maretzky, T., Hamada, K., Ohishi, K., Maney, S. K., Berger, T., Murthy, A., Duncan, G., Xu, H. C., Lang, K. S., Haussinger, D., Wakeham, A., Itie-Youten, A., Khokha, R., Ohashi, P. S., Blobel, C. P. and Mak, T. W. (2012) iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232.   DOI
49 Pascall, J. C. and Brown, K. D. (1998) Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett. 429, 337-340.   DOI
50 Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. and Black, R. A. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281-1284.   DOI
51 Saarinen, S., Vahteristo, P., Lehtonen, R., Aittomaki, K., Launonen, V., Kiviluoto, T. and Aaltonen, L. A. (2012) Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in tylosis with esophageal cancer. Fam. Cancer 11, 525-528.   DOI
52 Puente, X. S., Sanchez, L. M., Overall, C. M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544-558.   DOI
53 Rugg, E. L., Common, J. E., Wilgoss, A., Stevens, H. P., Buchan, J., Leigh, I. M. and Kelsell, D. P. (2002) Diagnosis and confirmation of epidermolytic palmoplantar keratoderma by the identification of mutations in keratin 9 using denaturing high-performance liquid chromatography. Br. J. Dermatol. 146, 952-957.   DOI
54 Rutledge, B. J., Zhang, K., Bier, E., Jan, Y. N. and Perrimon, N. (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 6, 1503-1517.   DOI
55 Sahin, U. and Blobel, C. P. (2007) Ectodomain shedding of the EGFreceptor ligand epigen is mediated by ADAM17. FEBS Lett. 581, 41-44.   DOI
56 Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769-779.   DOI
57 Schweitzer, R., Shaharabany, M., Seger, R. and Shilo, B. Z. (1995) Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518-1529.   DOI
58 Siggs, O. M., Grieve, A., Xu, H., Bambrough, P., Christova, Y. and Freeman, M. (2014) Genetic interaction implicates iRhom2 in the regulation of EGF receptor signalling in mice. Biol. Open 3, 1151-1157.   DOI