• Title/Summary/Keyword: human stem cell

Search Result 748, Processing Time 0.036 seconds

Embryonic Stem Cell and Nuclear Transfer

  • 임정묵
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.06a
    • /
    • pp.19-25
    • /
    • 2002
  • Researches on manipulation pluripotent stem cells derived from blastocysts or promordial germ cells (PGCs) have a great advantages for developing innovative technologies in various fields of life science including medicine, pharmaceutics, and biotechnology. Since the first isolation in the mouse embryos, stem cells or stem cell-like colonies have been continuously established in the mouse of different strains, cattle, pig, rabbit, and human. In the animal species, stem cell biology is important for developing transgenic technology including disease model animal and bioreactor production. ES cell can be isolated from the inner cell mass of blastocysts by either mechanical operation or immunosurgery. So, mass production of blastocyst is a prerequisite factor for successful undertaking ES cell manipulation. In the case of animal ES cell research, various protocol of gamete biotechnology can be applied for improving the efficiency of stem cell research. Somatic cell nuclear transfer technique can be applied to researches on animal ES cells, since it is powerful tool for producing clone embryos containing genes of interest. In this presentation, a brief review was made for explaining how somatic cell nuclear transfer technology could contribute to improving stem cell manipulation technology.

  • PDF

Establishment of Stem-like Cells from Human Umbilical Cord Vein

  • Park, Seah;Kim, Kyung-Suk;Kim, Haekwon;Do, Byung-Rok;Kwon, Hyuck-Chan;Kim, Hyun-Ok;Im, Jung-Ae
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.78-78
    • /
    • 2003
  • Adult stem cells can make identical copies of themselves for long periods of time. They also give rise to many differentiated mature cell types that have characteristic morphology and specialized function. Human adult stem cells are the attractive raw materials for the cell/tissue therapy, however, it is not easy to get from the adult tissues. In the present study, we tried to isolate a cell population derived from human umbilical cord vein which has been discarded after birth. The cells were isolated after treatment of the umbilical vein with collagenase or trypsin. After 3 days of culture, two kinds of cell populations were found consisting of adherent cells with endothelial cell-like and fibroblast-like morphology, respectively. When these cells were subcultured 12 times over a period of 3 months, almost cells appeared uniformly to exhibit fibroblastoid morphology which was different from that of mesenchymal stem cells obtained from human bone marrow The results of RT-PCR analyses showed distinct expression of BMP-4, oct-4, and SCF genes but not of GATA, PAX-6 and Brachyury genes. On immunohistochemical staining, the cells were negative for the von Willebrand factor(vWF), alpha-smooth muscle actin and placental alkaline phosphatase. From these observations, it is suggested that stem-like cells might be present in human umbilical cord vein.

  • PDF

Comparison of Expression Profiles of HOX Gene Family in Human Embryonic Stem Cells and Selected Human Fetal Tissues

  • Hwang Jung-Hye;Kim Kye-Seong;Kim Byung-Ju;Kwon Hee-Sun;Lee Man-Ryoul;Park Moon-Il;Jang Se-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.556-561
    • /
    • 2006
  • The HOX genes coding homeodomain proteins have been suggested as a candidate molecular switch that determines the fates of cells during embryonic development and patterning. It is believed that a set of differentiation-specific HOX genes enter into a turn-on state during tissue differentiation, in contrast to stem cell-specific HOX genes that enter into a turn-off state. However, comprehensive data of expression profiles of HOX genes in human embryonic stem cells (hESC) and differentiated embryonic tissues are not available. In this study, we investigated the expression patterns of all 39 HOX genes in hESC and human fetal tissues and analyzed the relationships between hESC and each tissue. Of the 39 genes, 18 HOX genes were expressed in stem cells, and diverse expression patterning was observed in human fetal tissues when compared with stem cells. These results indicate that HOX genes could be main targets for switching of stem cell differentiation into tissues.

THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS (지방기질유래 줄기세포의 골 분화 시 성장인자의 효과)

  • Kim, Uk-Kyu;Choi, Yeon-Sik;Jung, Jin-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

Recent Achievements in Stem Cell Therapy for Pediatric Gastrointestinal Tract Disease

  • Bae, Sun Hwan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • The field of stem cell research has been rapidly expanding. Although the clinical usefulness of research remains to be ascertained through human trials, the use of stem cells as a therapeutic option for currently disabling diseases holds fascinating potential. Many pediatric gastrointestinal tract diseases have defect in enterocytes, enteric nervous system cells, smooth muscles, and interstitial cells of Cajal. Various kinds of therapeutic trials using stem cells could be applied to these diseases. This review article focuses on the recent achievements in stem cell applications for pediatric gastrointestinal tract diseases.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: I. Effect of Neurotrophic Factors on Neural Progenitor Cells

  • Kim Eun-Yeong;Jo Hyeon-Jeong;Choe Gyeong-Hui;An So-Yeon;Jeong Gil-Saeng;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.18-18
    • /
    • 2002
  • This study was to investigate the effect of neurotrophic factors on neural cell differentiation in vitro derived from human embryonic stem (hES, MB03) cells. For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7 - 10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron cells, neural progenitor cells were cultured in ⅰ) N2 medium (without bFGF), ⅱ) N2 supplemented with brain derived neurotrophic factor (BDNF, 5ng/㎖) or ⅲ) N2 supplemented with platelet derived growth factor-bb (PDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells

  • Shin, Dong-Hyuk;Lee, Jeoung-Eun;Eum, Jin Hee;Chung, Young Gie;Lee, Hoon Taek;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2017
  • Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

Stem Cell Biotechnology for Cell Therapy

  • LEE Dong-Ree;KIM Ha Won
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.199-206
    • /
    • 2005
  • Cell therapy (CT) is a group of techniques to treat human disorders by transplantation of cells which have been processed and propagated independent of the living body. Blood transfusion and bone marrow transplant have been the primary examples of cell therapy. With introduction of stem cell (SC) technologies, however, CT is perceived as the next generation of biologies to treat human diseases such as cancer, neurological diseases, and heart disease. Despite potential of cell therapy, insufficient guidelines have been implemented concerning safety test and regulation of cell therapy. This review addresses the safety issues to be resolved for the cell therapy, especially SC therapy, to be successfully utilized for clinical practice. Adequate donor cell screening must preceed to ensure safety in cell therapy. In terms of SC culture, controlled, standardized practices and procedures should be established. Further molecular studies should be done on SC development and differentiation to enhance safety level in cell therapy. Finally, animal model must be further installed to evaluate toxicity, new concepts, and proliferative potential of SC including alternative feeder layer of animal cells.