• Title/Summary/Keyword: human stem cell

Search Result 822, Processing Time 0.026 seconds

Alterations and Co-Occurrence of C-MYC, N-MYC, and L-MYC Expression are Related to Clinical Outcomes in Various Cancers

  • Moonjung Lee;Jaekwon Seok;Subbroto Kumar Saha;Sungha Cho;Yeojin Jeong;Minchan Gil;Aram Kim;Ha Youn Shin;Hojae Bae;Jeong Tae Do;Young Bong Kim;Ssang-Goo Cho
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.215-233
    • /
    • 2023
  • Background and Objectives: MYC, also known as an oncogenic reprogramming factor, is a multifunctional transcription factor that maintains induced pluripotent stem cells (iPSCs). Although MYC is frequently upregulated in various cancers and is correlated with a poor prognosis, MYC is downregulated and correlated with a good prognosis in lung adenocarcinoma. MYC and two other MYC family genes, MYCN and MYCL, have similar structures and could contribute to tumorigenic conversion both in vitro and in vivo. Methods and Results: We systematically investigated whether MYC family genes act as prognostic factors in various human cancers. We first evaluated alterations in the expression of MYC family genes in various cancers using the Oncomine and The Cancer Genome Atlas (TCGA) database and their mutation and copy number alterations using the TCGA database with cBioPortal. Then, we investigated the association between the expression of MYC family genes and the prognosis of cancer patients using various prognosis databases. Multivariate analysis also confirmed that co-expression of MYC/MYCL/MYCN was significantly associated with the prognosis of lung, gastric, liver, and breast cancers. Conclusions: Taken together, our results demonstrate that the MYC family can function not only as an oncogene but also as a tumor suppressor gene in various cancers, which could be used to develop a novel approach to cancer treatment.

Proliferation, Apoptosis, and Telomerase Activity in Human Cord Blood CD34+ Cells Cultured with Combinations of Various Cytokines

  • Ahn, Myung-Ju;Lee, Hye-Sook;Jang, Mi-Yune;Choi, Jung-Hye;Lee, Young-Yeul;Park, Hyung-Bae;Lee, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.422-428
    • /
    • 2003
  • Umbilical cord blood (UCB), a rich source of hematopoietic stem/progenitor cells, has been proposed as an alternative to bone marrow and peripheral blood for transplantation treatment. Ex vivo expansion of cord blood stem cells could make the use of cord blood transplant feasible even for adult patients. However, the optimal cytokine cocktail for expansion of stem cells is yet to be established. This study compares proliferation, apoptosis, and telomerase activities in human cord blood stem cells cultured ex vivo with FLT3 ligand (FL)/thrombopoietin (TPO) or FL/TPO/stem cell factor (SCF), with a view to determine optimal combination of cytokines. CD34+ cells were cultured in DMEM containing either FL (50 ng/ml) and TPO (10 ng/ml) (FT group) or FL (50 ng/ml), TPO (10 ng/ml) and SCF (50 ng/ml) (FTS group). The cell proliferation rate was ten times higher in the FTS group. Although cells cultured with the two different combinations of cytokines were maintained for a long term (up to 8 weeks), a large number of cells underwent differentiation during this period. Cells cultured in FTS displayed lower levels of apoptosis compared to those of the FT group during the Initial 7 days of culture. The CD34+ fraction in both groups was markedly decreased to $21-30\%$ , and only $5-6\%$ was detected at 14 days of culture. Telomerase activity detected in human CD34+ cord blood at low levels was upregulated during the early phase of culture and decreased to baseline levels in the later phase. The telomerase activity of cord blood cultured in FT was lower than that of the FTS group. Our results suggest that, on adding stem cell factors to the FT cytokines, cultured CD34+ cord blood cells display a greater degree of cell proliferation and decreased apoptosis. However, during CD34+ cord blood cell culture, a Barge number of cells undergo differentiation, indicating that more potent novel cytokines or new culture conditioning methods should be developed to maintain their ability to engraft and sustain long-term hematopoiesis.

Characterization of Human Thigh Adipose-derived Stem Cells (사람의 허벅지지방유래 줄기세포의 특성 분석)

  • Heo, Jin-Yeong;Yoon, Jin-Ah;Kang, Hyun-Mi;Park, Se-Ah;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2010
  • Human adipose stem cells are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue and these cells have characteristics very similar to bone marrow mesenchymal stromal cells (BMMSCs). However, liposuction procedure, donor age, body mass index, and harvesting sites might generate differences in the initial cell population and the preparations are a heterogeneous mixture of precursors with different subsets. Therefore, in this study, we investigated the characteristics of human thigh adipose stem cells and the differentiation potential into mesodermal and endodermal lineage. Thigh adipose stem cells maintained fibroblast-like morphology similar to BM-MSCs and they underwent average 56.5 doublings and produced $5{\times}10^{22}$ cells. These cells expressed SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, and HLA-DR genes at p3 and they also expressed Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC proteins. Moreover, they could differentiate into mesodermal lineage cells such as adipocyte, osteoblast and chondrocyte. In addition, they also differentiated into insulin secreting cells in our culture condition. In conclusion, human thigh adipose stem cells retain proliferative potential and expression patterns similar to BM-MSCs and they also differentiate into various cell types. Thus, human thigh adipose stem cells might be useful alternative cell source for clinical application.

Assessment of Developmental Toxicants using Human Embryonic Stem Cells

  • Hong, Eui-Ju;Jeung, Eui-Bae
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF

Cardiac Differentiation of Chicken Spermatogonial Stem Cells-A Directional Approach

  • Sodhi, Simrinder Singh;Jeong, Dong Kee
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.137-142
    • /
    • 2014
  • A tremendous increase in the human population has put poultry industry under an increased pressure to meet steep increase in the demand. Poultry is contributing 25% of the total world's meat production and lesser cost of investment per bird makes it more suitable for the further breeding programmes. Major poultry diseases frequently lead to cardiac damage and cause huge economic losses to poultry industry due to mortality. The in vitro embryonic stem cell (ESC) technology has a futuristic approach for homogeneous populace of differentiated cells, for their further transplantations. During in vitro conditions the differentiated cell populace can be used in grafting and transplantation processes to regenerate damaged tissues. Therefore, the current study targeted the use of spermatogonial stem cells (SSCs) in the poultry production system through cardiac regeneration. The current study will also open new boulevard for the similar kind of research in other livestock species for the management of heart diseases.

The Effect of Polysaccharide from Angelica Gigas Nakai on Controlling the Differentiation of Human Embryonic Stem Cells

  • Park, Young-S.;Lee, Jae-E.;Lee, Seo-H.;Lee, Hyeon-Y.
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2002
  • It was found that the purified extract from A. gigas Nakai (polysaccharide, M.W., 25 kD) controled differentiating human ES cells. Its optimal supplementation concentration was decided as 0.8 $({\mu}g/ml)$ to efficiently control the differentiation. It also enhanced the cell growth, compared to the control. However, most widely used and commercially available differentiating agent, Leukemia Inhibitory Factor (LIF) negatively affected on the cell growth even though it controls the differentiation of ES cells, down to 40-50 % based on morphological observation and telomerase activity. It was presumed that the extract first affected on cell membrane and resulted in controlling signal system, then amplify gene expression of telomere, which enhanced the telomerase activity up to three times compared to the control. LIF only increased the enzyme activity up to two times. It was confirmed that the extract from A. gigas Nakai could be used for substituting currently used differentiation controlling agent, LIF from animal resources as a cheap plant resource and not affecting the cell growth. It can broaden the application of the plants not only to functional foods and their substitutes but also to fine chemicals and most cutting-edge biopharmaceutical medicine.

iPSC-Derived Natural Killer Cells for Cancer Immunotherapy

  • Karagiannis, Peter;Kim, Shin-Il
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.541-548
    • /
    • 2021
  • The discovery of human pluripotent stem cells (PSCs) at the turn of the century opened the door to a new generation of regenerative medicine research. Among PSCs, the donors available for induced pluripotent stem cells (iPSCs) are greatest, providing a potentially universal cell source for all types of cell therapies including cancer immunotherapies using natural killer (NK cells). Unlike primary NK cells, those prepared from iPSCs can be prepared with a homogeneous quality and are easily modified to exert a desired response to tumor cells. There already exist several protocols to genetically modify and differentiate iPSCs into NK cells, and each has its own advantages with regards to immunotherapies. In this short review, we detail the benefits of using iPSCs in NK cell immunotherapies and discuss the challenges that must be overcome before this approach becomes mainstream in the clinic.

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.