• Title/Summary/Keyword: human stem cell

Search Result 748, Processing Time 0.03 seconds

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu;Kim, Tae-Keun;Shin, Yeonhee;Tak, Eunyoung;Song, Gi-Won;Oh, Yeon-Mok;Kim, Jun Ki;Pack, Chan-Gi
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.851-860
    • /
    • 2021
  • Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Erratum to: Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan;Hong, Kwonho;Kim, Jin Hoi;Choi, Youngsok
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.718-727
    • /
    • 2019
  • Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.

Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan;Hong, Kwonho;Kim, Jin Hoi;Choi, Youngsok
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.625-634
    • /
    • 2019
  • Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.

Stem Cells in Drug Screening for Neurodegenerative Disease

  • Kim, Hyun-Jung;Jin, Chang-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Because the average human life span has recently increased, the number of patients who are diagnosed with neurodegenerative diseases has escalated. Recent advances in stem cell research have given us access to unlimited numbers of multi-potent or pluripotent cells for screening for new drugs for neurodegenerative diseases. Neural stem cells (NSCs) are a good model with which to screen effective drugs that increase neurogenesis. Recent technologies for human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) can provide human cells that harbour specific neurodegenerative disease. This article discusses the use of NSCs, ESCs and iPSCs for neurodegenerative drug screening and toxicity evaluation. In addition, we introduce drugs or natural products that are recently identified to affect the stem cell fate to generate neurons or glia.

mTOR signalling pathway - A root cause for idiopathic autism?

  • Ganesan, Harsha;Balasubramanian, Venkatesh;Iyer, Mahalaxmi;Venugopal, Anila;Subramaniam, Mohana Devi;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2019
  • Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals.

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

In Vitro Expansion of Homogeneous Neural Precursor Cells Derived from Human Embryonic Stem Cells

  • Na, Deuk-Chae;Kim, Se-Hee;Choi, Won-Ik;Hwang, Hyun-Jin;Han, In-Bo;Kim, Jae-Hwan;Park, Keun-Hong;Chung, Hyung-Min;Choi, Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III ${\beta}$-tubulin and MAP2ab were observed Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.