• Title/Summary/Keyword: human sensitivity engineering

Search Result 260, Processing Time 0.036 seconds

Detection of Heartbeat and Respiration Signal Using the Aircushion and the Frequency Domain Filter (에어쿠션 및 주파수 영역 필터를 이용한 호흡 및 심박 신호 검출)

  • Kim, Joo-Han;Cho, Sung-Pil;Shin, Jae-Yeon;Lee, Jeon;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.33-42
    • /
    • 2010
  • In this study, we have proposed a simple cardiorespiratory monitoring method based on displacements of human body which occurs due to periodic heartbeat and breathing. The proposed system consists of an aircushion, pressure sensing hardware and heartbeat and respiration signals extraction algorithm. The aircushion was used for unconstrained measurement of the respiration and heartbeats without a sensor attached on the subject's skin surface. The displacements of subject sitting on the aircushion cause small pressure variations. These variations are amplified and filtered with the pressure sensing hardware. Finally, heart rate and respiration rate are extracted by signal processing algorithm based on frequency domain filter. To evaluate the performance, extracted respiration and heart rate from proposed system were compared with conventional methods. The average sensitivity of respiration and heart rate are 98.67% and 99.24%, respectively. These results show the proposed method has advantages of installing and processing simplicity so as to be used easily in unconstrained respiration and heart rate monitoring in daily life.

Risk Assessment of Groundwater and Soil in Sasang Industrial Area in Busan Metropolitan City (부산광역시 사상공단지역의 지하수 및 토양 위해성 평가)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Cheong, Jae-Yeol;Ryu, Sang-Min;Jang, Seong;Lee, Jeong-Hwan;Lee, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.295-306
    • /
    • 2009
  • The risk assessment of groundwater and soil in Sasang industrial complex in Busan Metropolitan City was carried out in order to estimate risks to human health and the environment. The carcinogenic risk (CR) of receptors to soil and air was not identified. However, the CRs for TCE and PCE were 6.7E-6 and 1.0E-5, respectively. Hazard quotient (HQ) and hazard index (HI) did not appear through air exposure pathways. Yet the HQ and HI of soil were 3.4E-5 and 5E-5, respectively, and lower than the critical value (1.0). On the contrary, HQ and HI with respect to groundwater were calculated as 0.7 (not hazardous) and 1.4 (hazardous). The constituent reduction factor (CRF) for TCE in the study area was determined as 2.5, and thus remediation work is demanded. As a result of sensitivity analysis for 18 exposure factors, eight exposure factors (life time of carcinogens, age, body weight, exposure duration, exposure frequency, dermal exposure frequency, water ingestion rate, and soil ingestion rate) varied with the variation of risk.

An Impact Assessment on Atmospheric Dispersion of Pesticide using AGDISP Model (AGDISP모델을 이용한 농약의 대기확산 영향평가)

  • Kim, Jeong-Hwan;Koo, Youn-Seo;Lee, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.547-556
    • /
    • 2013
  • Recently, golf courses have increased over the years because golf became popular leisure sport. Various environmental problems have been then issued by a golf course during constructing and running them. A problem of pesticide, which is serious among various environmental problems, from golf course has harmful effect on surrounding area and makes human suffer from acute and chronic diseases. Pesticides are used for the cost-effective managing of golf course and the amount of pesticides also increases as the number of golf course increase. Since the assessment of pesticides on near-by surrounding has been focused on water and soil media, studies related to atmospheric dispersion have been hardly attempted. The method to assess an impact of pesticide nearby agricultural production by the atmospheric dispersion using AGDISP(AGricultural DISPersal) model was developed and applied to the actual planned golf course located in Hongcheon, Gangwon. For implementing AGDISP, parameters were investigated from the golf course's land use planning map, pesticide spray device, Hong-Cheon weather station and etc. First of all, a kind of pesticide, a form of spraying pesticide, geographical features, weather data, and distance(golf course to plantation) were investigated to understand how to work these parameters in AGDISP. Restricted data(slope angle, droplet size distribution and solar insolation) sensitivity analysis of these parameters to estimate effect of pesticide nearby a plantation and a high relative contribution data of analyzed data was selected for input data. Ethoprophos was chosen as the pesticide used in the golf course and the amounts of pesticide deposition per annual agricultural productions were predicted. The results show that maximum amount of pesticide deposition through atmospheric dispersion was predicted $2.32{\mu}/m^2$ at 96 m where the nearest organic plantation exists. The residues of pesticide were also estimated based on the annul production of the organic and the deposition amount of the pesticide. Consequently, buckwheat, wheat and millet were likely to exceed maximum residue limits for pesticides in foods(MRL) and sorghum, corn and peanut were likely to exceed MRL by organic farming as well.

Synergistic Effects of 5-Fluorouracil (FU) and Curcumin on Human Cervical Cancer Cells (5-fluorouracil과 curcumin의 복합투여에 의한 자궁암세포의 성장억제와 p53유전자 발현의 상승 효과)

  • Ahn, Seong-Ho;Kim, Dong-Heui;Kang, Jung-Hoon;Lee, Myeong-Seon
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.229-235
    • /
    • 2010
  • Cervical cancer is associated with low antioxidant status. It has a high prevalence especially amongst woman in Asia and is a leading cause of cancer death. Cancer chemotherapy in vivo improved in cases with high p53 expression in the tumor tissue. The restoration of p53 levels could be a potential strategy to increase chemoresponsiveness. Under circumstances where damage is extensive, p53 plays a direct role in trigering apoptosis. To investigate the effect of curcumin (CMN) as an antioxidant agent on anticancer agent 5-fluorouracil (5FU) induced apoptosis and p53 expression, HPV-18 positive HeLa cells were treated with noncytotoxic amounts of antioxidant. Curcumin induced apoptosis in cervical cancer cells. Morphological hallmarks of apoptosis such as nuclear fragmentation and internucleosomal fragmentation of DNA were observed. CMN caused upregulation of p53 expression, evident from Western blotting data and also increased the susceptibility/apoptosis induced by 5FU. These results show that increasing drug sensitivity of cervical cancer cells by upregulation of p53 using CMN is novel approach and could have a possible therapeutic potential in cervical cancer.

A New Shock Index for Predicting Survival of Rats with Hemorrhagic Shock Using Perfusion and Lactate Concentration Ratio (흰쥐의 출혈성 쇼크에서 관류와 젖산 농도 비를 이용한 새로운 생존 예측 지표 개발)

  • Choi, Jae-Lim;Nam, Ki-Chang;Kwon, Min-Kyung;Jang, Kyung-Hwan;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Hemorrhagic shock is a clinically widespread syndrome characterized by inadequate oxygenation and supply. It is important to diagnose hemorrhagic shock in its early stage for improving treatment effects and survival rate. However, an accurate diagnosis and treatment could be delayed in the early stage of hemorrhagic shock by evaluating only vital signs such as heart rate and blood pressure. There have been many studies for the early diagnosis of hemorrhagic shock, reporting that lactate concentration and perfusion were useful variables for tissue hypoxia and metabolic acidosis. In this study, we measured both perfusion using a laser Doppler flowmeter and lactate concentration from the volume controlled hemorrhagic shock using rats. We also proposed a new shock index which was calculated by dividing lactate concentration by perfusion for early diagnosis. As a result of the survival prediction by the proposed index with the receiver operating characteristic curve method, the sensitivity, specificity, and accuracy of survival were 90.0, 96.7 and 94.0%, respectively. The proposed index showed the fastest significant difference among the other parameters such as blood pressure and heart rate. It could offer early diagnosis and effective treatment for human hemorrhagic shock if it is applicable to humans.

Performance Evaluation of Hazardous Substances using Measurement Vehicle of Field Mode through Emergency Response of Chemical Incidents

  • Lee, Yeon-Hee;Hwang, Seung-Ryul;Kim, Jae-Young;Kim, Kyun;Kwak, Ji Hyun;Kim, Min Sun;Park, Joong Don;Jeon, Junho;Kim, Ki Joon;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2015
  • BACKGROUND: Chemical accidents have increased owing to chemical usage, human error and technical failures during the last decades. Many countries have organized supervisory authorities in charge of enforcing related rules and regulations to prevent chemical accidents. A very important part in chemical accidents has been coping with comprehensive first aid tool. Therefore, the present research has provided information with the initial applications concern to the rapid analysis of hazardous material using instruments in vehicle of field mode after chemical accidents. METHODS AND RESULTS: Mobile measurement vehicle was manufactured to obtain information regarding field assessments of chemical accidents. This vehicle was equipped with four instruments including gas chromatography with mass spectrometry (GC/MS), Fourier Transform Infrared Spectroscopy (FT-IR), Ion Chromatography (IC), and UV/Vis spectrometer (UV) to analyses of accident preparedness substances, volatile compounds, and organic gases. Moreover, this work was the first examined the evaluation of applicability for analysis instruments using 20 chemicals in various accident preparedness substances (GC/MS; 6 chemicals, FT-IR; 2 chemicals, IC; 11 chemicals, and UV; 1 chemical) and their calibration curves were obtained with high linearity ( r 2 > 0.991). Our results were observed the advantage of the high chromatographic peak capacity, fast analysis, and good sensitivity as well as resolution. CONCLUSION: When chemical accidents are occurred, the posted measurement vehicle may be utilized as tool an effective for qualitative and quantitative information in the scene of an accident owing to the rapid analysis of hazardous material.

Signal-Averaged P Wave Analysis in Patients with Paroxysmal Atrial Fibrillation (발작성 심방세동 환자의 신호평균 P파 분석)

  • 김인영;이종연;이병채;이용희;이종민;김선일;김준수
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Atrial fibrillation(AF). chronic or paroxysmal is the most frequent arrhythmia in human subjects Duration of P wave in signal-averaged electrocardiography(SAECG) reflects intra-atrial conduction time and therefore. could be used as an electrophysiological marker for atrial conduction chance at the earthy stave. So we apply the analysis method using SAECG to diagnose Paroxysmal atrial fibrillation(PAF) . Subjects Participated for the study consisted of two groups: a control group(n=34) of normal healthy volunteers and a group of AF Patients(n=38) with a documented history of PAF but no other history of cardiac disease. We evaluated the effect of several filtering and determination methods to find the starting and ending feints of the P wavy on its duration. To increase the measurement reliability of P wave duration. the automatic detection method was proposed. Also. to increase the detection rate for PAF risk, the decision threshold value was optimized using receiver operation characteristics(ROC) curve. Results showed that the highest statistical difference (p〈0.001) of the P wane duration between controls and subjects was obtained at the Processing condition, using absolute threshold vague(8.75 $\mu N$) , a least mean square(LMS) high pass filter and 30 Hz cutoff frequency. The most outstanding difference(sensitivity 88 % specificity 64.4 %) between controls and subjects was obtained at the decision threshold value of 112 ms.

High Resolution MR Images from 3T Active-Shield Whole-Body MRI System (3T 능동차페형 전신 자기공명영상 장비로부터 얻어진 고해상도 자기공명영상)

  • Bo-Young Choe;Sei-Kwon Kang;Myoung-Ja Chu;Hyun-Man Baik;Euy-Neyng Kim
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.2
    • /
    • pp.138-148
    • /
    • 2001
  • Purpose : Within a clinically acceptable time frame, we obtained the high resolution MR images of the human brain, knee, foot and wrist from 3T whole-body MRI system which was equipped with the world first 37 active shield magnet. Materials and Methods : Spin echo (SE) and Fast Spin Echo (FSE) images were obtained from the human brain, knee, foot and wrist of normal subjects using a homemade birdcage and transverse electromagnetic (TEM) resonators operating in quadrature and tuned to 128 MHz. For acquisition of MR images of knee, foot and wrist, we employed a homemade saddle shaped RF coil. Topical common acquisition parameters were as follows: matrix=$512{\times}512$, field of view (FOV) =20 cm, slice thickness = 3 mm, number of excitations (NEX)=1. For T1-weighted MR images, we used TR = 500 ms, TE = 10 or 17.4 ms. For T2-weighted MR images, we used TR=4000 ms, TE = 108 ms. Results : Signal to noise ratio (SNR) of 3T system was measured 2.7 times greater than that of prevalent 1.5T system. MR images obtained from 3T system revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. Conclusion The present results demonstrate that the MR images from 3T system could provide better diagnostic quali\ulcorner of resolution and sensitivity than those of 1.5T system. The elevated SNR observed in the 3T high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the microscopic structural level under in vivo conditions. These images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.

  • PDF

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

Evaluation of Commercial Complementary DNA Synthesis Kits for Detecting Human Papillomavirus (인유두종바이러스 검출을 위한 상용화된 cDNA 합성 키트의 평가)

  • Yu, Kwangmin;Park, Sunyoung;Chang, Yunhee;Hwang, Dasom;Kim, Geehyuk;Kim, Jungho;Kim, Sunghyun;Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.309-315
    • /
    • 2019
  • Cervical cancer is the fourth most common malignant neoplasm in women worldwide. Most cases of cervical cancer are caused by an infection by the human papillomavirus. Molecular diagnostic methods have emerged to detect the HPV for sensitivity, specificity, and objectivity. In particular, real-time PCR has been introduced to acquire a more sensitive target DNA or RNA. RNA extraction and complementary DNA synthesis are proceeded before performing real-time PCR targeting RNA. To identify an adequate and sensitive cDNA synthesis kit, this study evaluated the two commonly used kits for cDNA synthesis. The results show that the $R^2$ and efficiency (%) of the two cDNA synthesis kits were similar in the cervical cancer cell lines. On the other hand, the Takara kit compared to Invitrogen kit showed P<0.001 in the $10^2$ and $10^3$ SiHa cell count. The Takara kit compared to the Invitrogen kit showed P<0.001 in the $10^1$ and $10^2$ HeLa cell count. Furthermore, 8, 4, 2, 1, and 0.5 ml of forty exfoliated cell samples were used to compare the cDNA synthesis kits. The Takara kit compared to the Invitrogen kit showed P<0.01 in 8, 4, and 1 ml and P<0.05 in 0.5 mL. The study was performed to identify the most appropriate cDNA synthesis kit and suggests that a cDNA synthesis kit could affect the real-time PCR results.