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Purpose : Within a clinically acceptable time frame, we obtained the high resolution
MR images of the human brain, knee, foot and wrist from 3T whole-body MRI
system which was equipped with the world first 3T active shield magnet.

Materials and Methods : Spin echo (SE} and Fast Spin Echo (FSE) images were obtained
from the human brain, knee, foot and wrist of normal subjects using a homemade
birdcage and transverse electromagnetic (TEM) resonators operating in quadrature
and tuned to 128 MHz. For acquisition of MR images of knee, foot and wrist, we
employed a homemade saddle shaped RF coil. Typical common acquisition
parameters were as follows: matrix=512 X512, field of view {FOV)=20 cm, slice
thickness=3 mm, number of excitations (NEX}=1. For T1-weighted MR images, we
used TR=500 ms, TE=10 or 17.4 ms. For T2-weighted MR images, we used TR=
4000 ms, TE=108 ms.

Results : Signal to noise ratio (SNR) of 3T system was measured 2.7 times greater
than that of prevalent 1.5T system. MR images obtained from 3T system revealed
numerous small venous structures throughout the image plane and provided
reasonable delineation between gray and white matter.

Conclusion : The present results demonstrate that the MR images from 3T system
could provide better diagnostic quality of resolution and sensitivity than those of 1.5T
system. The elevated SNR observed in the 3T high field magnetic resonance imaging
can be utilized to acquire images with a level of resolution approaching the
microscopic structural level under in vivo conditions. These images represent a
significant advance in our ability to examine small anatomical features with
noninvasive imaging methods.
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Introduction

The first magnetic resonance imaging experiments
were conducted with nuclear magnetic resonance
(NMR) line scanning (1) and projection reconstruction
(2) methods. While these methods established the
feasibility of the magnetic resonance imaging (MRI)
approach, they were characterized with relatively low
spatial resolution (1, 2). Nonetheless, technological
achievable spatial resolution gradient design (3) and
spatial encoding methods (4, 5) soon permitted an
increase in achievable spatial resolution, thereby
greatly improving the radiological utility of MRI
methods.

The need for enhanced spatial resolution in magnetic
resonance arises from the desire to more precisely
visualize small structures both on conventional and
angiographic images. Increased spatial resolution also
results in reduced susceptibility artifacts echo based
MR imaging in part due to the associated increases in
receiver bandwidths (6, 7). In addition, enhanced
spatial resolution leads to superior image interpolation
required in generating MR angiograms (MRA).

Unfortunately, since magnetic resonance is an
inherent technique, image resolution cannot be
continuously increased without significantly com-
promising image quality and signal to noise (8-11). As
these two characteristics progressively deteriorate, the
ability to detect the structure of interest, or the
visibility, also degrades. Visibility (V) can be defined as
the product of the contrast-to-noise ratio (CNR) and the
square root of the number of pixels (p) occupied by the
object of interest. It is expressed as follows:V=CNR p.
The importance of determining appropriate spatial
resolution based on visibility rather than signal-to-noise
criteria alone has been addressed (12).

At 1.5T, increases in spatial resolution have often
been associated with the use of specialized local surface
(13} or phased array {14) radio frequency (RF) coils in
order to maximize the available signal, to noise at this
field strength. In addition, signal processing methods
may help enhance signal to noise while preserving, as
much as possible, edge definition {15-16). Using a
combination of these approaches, excellent high
resolution images have been obtained from the human
skin (17), the extremities and cartilage (18-20), the

trabecular bone (21-22), the inner ear (23-27), the eye
(28-31), and the facial nerves {32-34). Increased spatial
resolution has also proven valuable in MRA studies
where higher resolution 3D data sets provide vessel
visualization (35-36). Indeed, increased spatial
resolution leads not only to the visualization of more
vessels but also in the ability to differentiate
progressively smaller structures. It is known for
instance that vessel visibility is determined by the
position of the structure of interest within the voxel
grid (37). Vessels contained entirely within one voxel
are thus brighter than when positioned between voxels.
This is a partial volume effect that can be reduced with
increased matrix size. Nonetheless, as resolution
continues to increase, signal to noise to degrade to such
an extent that visibility becomes compromised and the
number of vessels observed no longer continues to
increase. Similarly, while high resolution approaches
increase functional localization in functional MRI by
reducing partial volume effects, this is associated both
with a significant increase in scan times and a
reduction in signal to noise (38).

Despite limitations in signal to noise even with high
field systems operating at 1.5T, excellent high
resolution studies of the human brain have been
conducted at this field strength. Using phased array
detectors and an automated intensity correction
algorithm, for instance, Wald et al. (39) have been able
to obtain good spoiled gradient recalled volume
acquisition images. In these studies, an in-plane pixel
size of 0.47-0.66 mm was obtained using a 0.7 mm slice
thickness. Alternatively, using a fast spin echo
approach were able to obtain 512 X 512 images with an
in-plane resolution of 0.27-0.33 mm with a 1.5-3 mm
slice thickness and an acquisition time of only 8.5
minutes. Similarly, Feinberg et al. {40) using the
gradient-SE (GRASE) technique and partial k-space
sampling, were able to obtain 2D-1024 matrix images
of the human head in only 4 minutes, 20 seconds. The
resulting images contained a 0.28X0.27 mm in-plan
resolution and displayed many small anatomic
structures including the cochlea of the inner ear,
vascular details, and the cranial nerves.

Given available field strength and total acquisition
time, the aforementioned studies illustrate the potential
of high resolution MRI. This conclusion can be further
amplified by work performed at 4T (41-42} where high
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resolution modified driven equilibrium Fourier
transform {(MDEFT) images were obtained using a 512
x 512 matrix. These images had a 400-500 ¢m in-plane
resolution from a 5 mm slice and revealed exquisite
anatomical detail and gray/white matter contrast.
Moreover, they display remarkable signal to noise in
very high field (VHF) MRI, despite the use of standard
volumetric head coils (43).

Recently, a series of 1K X 1K gradient echo images
with a 200 #m in-plane resolution (44-45) have been
obtained from the human head at 8 Tesla {46-47} using
standard transverse electromagnetic (TEM) volumetric
coils (48). These images display good in-plane
resolution and enhancement of the venous vasculature.
In addition, they highlight the tremendous magnetic
susceptibility obtained at ultra high field strengths.

Materials and Methods

High resolution gradient recalled echo images were
acquired at 128 MHz using a 3T instrument. It consists
of a 3 Tesla/64 cm superconducting magnet manufac-
tured by Oxford Magnet Technology LTD. (Witney,
England} and customized gradient coil by Tesla
Engineering Limited (Sussex, England). This magnet is
independently ordered for the active shielded type with
the weight of 11 tons. And, it is positioned within a
magnetic shield constructed from annealed low carbon
steel (grade 1006). Using a combination of
superconductive shims located within the cryostat and
resistive shims located in a specialized shim insert, the
3T magnet achieved a homogeneity of 3.78 ppm over a
40 cm diameter spherical volume established on 12-
plane plot. The gradient system utilized in these studies
consists of an asymmetric torque free gradient insert

Fig. 1. Typical T1l-weighted axial
MR images in normal volunteer
using conventional spin echo
pulse sequence. Parameters are
TR 500 ms, TE 10 ms, matrix 256
X 256, slice thickness 4 mm, FOV
20 cm, NEX 1.

W Fig. 2. Typical T2-weighted axial
MR images in normal volunteer
using fast spin echo with ETL 8.
Parameters are TR 4000 ms, TE
108 ms, matrix 512 %512, slice
thickness 5 mm, FOV 20 cm,
NEX 2.
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for whole body imaging. The gradient amplifier is
capable of delivering 650V/430A on each gradient axis,
and provided by MTS (MTS Systems Corporation,
Horsham, PA, USA). And, spectrometer has a four
channel system.

All images in this study were acquired with a
Magnus 2.1 for Magnum 3T (Medinus LTD. Koreaj. It
is equipped with Magnus Software and is able to
support basic acquisition pulse sequences for fast EPI
imaging, broad line imaging, 3D imaging, angiography
and spectroscopy. The RF front end of the 3T system is
comprised of a high power TR switch. Nonmagnetic
narrow band Ga/As field effect transistor (FET)
preamplifiers (Advanced Receiver Research,
Burlington, CT, U.S.A) complete the front end allowing
close proximity of the RF front end to the NMR coil.
The quality of the receiver chain with the Magnum
console was measured by examining the noise

performance.

Spin echo (SE) pulse sequence was employed for T1-
weighted MR images. However, for proton density and
T2-weighted MR images, we used fast spin echo (FSE)
with the echo train length of 8 or 16.

Radio frequency power at 128 MHz was provided by
RF amplifiers constructed specifically for this project
by AMT (Herley Company, Anaheim, CA, USA).
Images were acquired with a birdcage volumetric head
coil and TEM head coil. The TEM coil was designed to
operate in quadrature and was constructed from a
group of 16 TEM struts enclosed in a copper shield.

Results

T1-weighted axial SE images obtained from a brain of
normal volunteer at 3T using TR 500ms, TE 10 ms and
256 X 256 matrix are displayed in Fig. 1. These images
were obtained with a 4 mm slice thickness, a 20 cm
FOV, using conventional SE pulse sequence. As can be

B Fig. 3. T2-weighted coronal MR
images in normal volunteer using
fast spin echo with ETL 12.

Fig. 4. T2-weighted sagittal MR
images in normal volunteer using
fast spin echo with ETL 8.
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seen, the contrast between white and gray matter is
remarkable. And, structures of basal ganglia, internal
and external capsules as well as ventricles are well
discriminated.

Figure 2 shows T2-weighted axial FSE images with
high resolution of 512 x 512 matrix, TR 4000 ms, TE
108 ms. Note the substantial degree of vascular
structure in detail. It is clearly differentiable for
putamen and globus pallidus in basal ganglia. T2-
weighted coronal and sagittal images are shown in Figs
3 and 4. Fine structural components in cerebellum are
marked. Proton density axial images were shown in
Fig. 5. For acquisition of proton density image, we used
FSE by 4 excitation pulse with TR 2000 ms, TE 16 ms,
NEX 2. White matter has rather dark signal than gray
matter. Figure 6 shows fast spin echo FLAIR images
with ETL 8, TT 140 ms, TR 6000 ms and TE 16 ms. CSF
has completely dark signal than any other tissue. Most

of fat signal was suppressed in fast spin echo STIR

image in Fig. 7 with TI 2200 ms, TR 9000 ms and TE
96 ms. Note the fat tissue near skull has dark signal.
MR angiography is presented by 3D-time of flight
(TOF) technique with TR 30 ms, TE 6.6 ms, FA 25,
NEX 1 in Fig. 8. Peripheral vessels as well as major
vessels are clearly demonstrated without problematic
artifacts.

T1 and T2-weighted coronal and sagittal MR images
of knee are shown in Fig. 9 and 10, respectively.
Lateral and medial meniscus are well denoted. For
acquisition of T1-weighted coronal image, we used TR
500 ms, TE 17.4 ms, slice thickness 4 mm and NEX 1.
And, T2-weighted sagittal images, we used FSE with
ETL 16, TR 5500 ms, TE 88 ms, slice thickness 4 mm
and NEX 1. Anterior cruciate ligament is well
delineated as a dark signal intensity.

Figures 11 and 12 show T1- and T2-weighted MR
image of foot with identical parameters for knee scans.
The individual bones and joints are clearly seen.

Fig. 5. Proton density axial MR
images using fast spin echo by 4
excitation pulse with TR 2000 ms,
TE 16 ms, NEX 2.

Fig. 6. Fast Spin Echo FLAIR
images with TI 140, TR 6000 and
TE 16, NEX 2.
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T1, T2 and T2*-weighted MR images of wrist were
obtained in Fig. 13. In particular, we used gradient
echo of spoil pulse in steady state (GESPHSSF) with TR
450 ms, TE 15 ms, NEX 2 and flip angle 22°. The
ligaments and muscle as well as entire carpal and
metacarpal bones and joints are well visualized.

Discussion

Given the excellent technological performance of
modern MRI scanners, the ability to acquire high
resolution images with this modality is governed almost
exclusively by available signal to noise. Thus, while
excellent image scan be acquired at 1.5T, this field
strength lacks the inherent signal to noise to make high
resolution imaging feasible. As such, note that when
conventional acquisition methods are utilized at 1.5T, it
is difficult to obtain a resolution with a pixel volume

much below 1 mm® Indeed, using a standard SE pulse

sequence and a bird-cage gquadrature head coil
configuration with a state-of-the-art clinical scanner,
images obtained with a 1 mm’® pixel volume yielded
little or no useful diagnostic information. In contrast at
3T MRI system, high resolution images (pixel volume <
0.1 mm? can be obtained using standard imaging
sequences and RF head coils without difficulty. This is
the case despite the use of larger receiver bandwidths
and less than fully relaxed spin excitation conditions.
T2-weighted MR image displayed in Fig. 2 was
presented for appropriate reasons in that it represent
the trial attempt to obtain high resolution results at 3T.
In addition to provide high contrast of compatible
quality in MR image, it dose reveal the potential of high
field magnetic resonance imaging for increasing spatial
resolution, While SNR of 3T system is increased
approximately 2.7 times compared with prevalent 1.5T
system, the contrast in 3T system was not
proportionally increased like SNR. However, as SNR

Fig. 7. STIR image for fat
suppression with TI 2200 ms, TR
9000 ms, TE 96 ms, NEX 1.

R Fig. 8. MR angiography is
presented by 3D-time of flight
(TOF) technique with TR 30 ms,
TE 6.6 ms, FA 25°, NEX 1. Peri-
pheral vessels are clearly demon-
strated.
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increase, the total scan time could be significantly

reduced.

In addition to T1-weighted MR image (Fig. 1), T2-
weighted MR images were displayed in Figs. 2-4. Note
the vascular detail in these images, despite the use of a

standard FSE pulse sequence. Much of this vascular
anatomy is venous in origin. Nonetheless, there are
literally hundreds of minute vessels visible in these
images. This speaks to the tremendous potential of high
field MRI system in obtaining high-resolution MRA

@ Fig. 9. T1-weighted coronal MR
images of knee. Conventional spin
echo pulse sequence was used.
We used TR 500 ms, TE 17.4 ms,
NEX 1, slice thickness 4 mm and
rectangular FOV 160 X 180 cm.

Fig. 10. T2-weighted sagittal MR
images of knee with FSE with
ETL 16.

Fig. 11. T1-weighted sagittal MR
8l images of foot. Parameters are
identical with the scans for knee.
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Fig. 12. T2-weighted MR image of

Fig. 13. T1, T2 and T2*-weighted MR images of wrist. In particular, we used gradient echo of spoil pulse in steady
state (GESPHSSF) with TR 450 ms, TE 15 ms, NEX 2 and flip angle 220. Total 10 segmental bone structures are
well denoted.

results {Fig. 8). At the same time, while the pixel
resolution on these images is outstanding, it cannot be
directly related to true in-plane resolution due to
inherent physiological motion. Thus, it may become
important to gate image acquisition to cardiac or other
physiological motion in order to help ensure that pixel
resolution can be directly correlated to true resolution.
Nonetheless, the ability to obtain high resolution MR
images will remain ultimately dictated by the
Boltzmann equation. This equation determines the

distribution of the spin population in the up state
relative to the down state as a result of temperature
and filed strength. Thus, given adequate spectrometer
hardware, the only way to significantly enhance signal
to noise is through a substantial increase in field
strength.

The fundamental promise of high field MRI system
relies on increased image resolution and decreased
scanning times, both of which are critically related to
intrinsic signal to noise (49]. It reflects signal to noise in
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the absence of T1, T2*, motion, flow, and scanner
hardware effects. Intrinsic signal to noise, in turn must
increase with field strength. It is clear from the images
contained herein that the intrinsic signal to noise ratio
at 3T will be phenomenal, possibly approaching a
factor of 2.7 increase over a conventional 1.5T scanner.
Given such performance, it is difficult to fully visualize
the potential impact of high field MR image.
Nonetheless, we had better insist the present trends in
signal to noise and high resolution imaging continue.
Finally it appears that the radiological sciences are
destined to become increasingly field-strength oriented
in nature.
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