• Title/Summary/Keyword: human operator control system

Search Result 144, Processing Time 0.025 seconds

A Study on a Geometrical Analysis for the Manual Mode of an Advanced Teleoperator System (지적 원격조작시스템의 수동모드 개선을 위한 기하학적 해석에 관한 연구)

  • Lee, Sun-Yo;Kim, Chang-Dae;Park, Se-Gwon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.31-44
    • /
    • 1988
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment then the automatic mode changes into the manual mode. The operation by the control program and the operation by a human recover the error in the manual mode. The system resumes the automatic mode and continues the given task. It is necessary to improve the manual mode in order to make the best use of a man-robot system, as a part of the human interface technique. Therefore, the error recovery task is performed by combining the operation by the control program representing autonomy of a robot and the operation by a human representing versatility of a human operator effectively in the view point of human factors engineering. The geometric inverse kinematics is used for the calculation of the robot joint values in the operation by the control program. The singularity operation error and the parameter operation error often occur in this procedure. These two operation errors increase the movement time of the robot and the coordinate reading time, during the error recovery task. A singularity algorithm, parameter algorithm and fuzzy control are studied so as to remove the disadvantages of geometric inverse kinematics. And the geometric straight line motion is studied so as to improve the disadvantages of the operation by a human.

  • PDF

Implementation of Real Reality Robot Game for Environment of Ubiquitous Concept (유비쿼터스 개념 환경하에서 실제 현실 로봇 게임 구현)

  • Joo, Byung-Kyu;Jeon, Poongwu;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.977-983
    • /
    • 2005
  • In this paper, novel ubiquitous concept of real reality robot game controlled by a mobile server robot is proposed. Real reality robot game means that two real robots controlled by humans/computers through the internet are playing a boxing game. The mobile server robot captures playing images of the boxing game and sends them to GUI on the screen of human operators' PC. The human operator can login to the boxing game from any computer in any place if he/she is permitted. Remote control of a boxing robot by a motion capture system through network is implemented. Successful motion control of a boxing robot remotely controlled by a motion capture system through network can be achieved. In addition, real boxing games between a human and a computer are demonstrated.

Concept of an intelligent operator support system for initial emergency responses in nuclear power plants

  • Kang, Jung Sung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2453-2466
    • /
    • 2022
  • Nuclear power plant operators in the main control room are exposed to stressful conditions in emergency situations as immediate and appropriate mitigations are required. While emergency operating procedures (EOPs) provide operators with the appropriate tasks and diagnostic guidelines, EOPs have static properties that make it difficult to reflect the dynamic changes of the plant. Due to this static nature, operator workloads increase because unrelated information must be screened out and numerous displays must be checked to obtain the plant status. Generally, excessive workloads should be reduced because they can lead to human errors that may adversely affect nuclear power plant safety. This paper presents a framework for an operator support system that can substitute the initial responses of the EOPs, or in other words the immediate actions and diagnostic procedures, in the early stages of an emergency. The system assists operators in emergency operations as follows: performing the monitoring tasks in parallel, identifying current risk and latent risk causality, diagnosing the accident, and displaying all information intuitively with a master logic diagram. The risk causalities are analyzed with a functional modeling methodology called multilevel flow modeling. This system is expected to reduce workloads and the time for performing initial emergency response procedures.

Sensory Feedback for High Dissymmetric Master-Slave Dexterity

  • Cotsaftis, Michel;Keskinen, Erno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Conditions are discussed for operating a dissymmetric human master-small (or micro) slave system in best (large position gain-small velocity gain) conditions allowing higher operator dexterity when real effects (joint compliance, link flexion delay and transmission distortion) are taken into account. It is shown that position PD feedback law advantage for ideal case no longer holds, and that more complicated feedback law depending on real effects has to be implemented with adapted transmission line. Drawback is slowdown of master slave interaction, suggesting to use more advanced predictive methods for the master and more intelligent control law for the slave.

Consideration of Human Operators in Man-Machine Systems

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2471-2474
    • /
    • 2003
  • This paper focuses on the stability and operability of a man-machine system considering a human operator. Some papers' main interest has been the stability only, but the operability such as fatigue is also the other main interest. In a man-machine system, feelings such as motional, visual, and kinesthetic are important since those enable operators to work easily or fatigue operators. A model of a man-machine system has been developed. Motional, visual, and kinesthetic feelings may be considered as feedbacked sensor signals. We also have quantified the degree of fatigue with respect to reference operation. This is a performance index to be optimized. Several methods are presented to optimize the degree of fatigue and the stability of the integrated system. Examples are presented to show that the usefulness of the proposed modeling method and fatigue mitigating algorithm.

  • PDF

Human-Robot Cooperative Control for Construction Robot (건설로봇용 인간-로봇 협업 제어)

  • Lee, Seung-Yeol;Lee, Kye-Young;Lee, Sang-Heon;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.285-294
    • /
    • 2007
  • Previously, ASCI(Automation System for Curtain-wall Installation) which combined with a multi-DOF manipulator to a mini-excavator was developed and applied on construction site. As result, the operation by one operator and more intuitive operation method are proposed to improve ASCI's operation method which need one person with a remote joystick and another operating an excavator. The human-robot cooperative system can cope with various and untypical constructing environment through the real-time interacting with a human, robot and constructing environment simultaneously. The physical power of a robot system helps a human to handle heavy construction materials with relatively scaled-down load. Also, a human can feel and response the force reflected from robot end effecter acting with working environment. This paper presents the feasibility study regarding the application of the proposed human-robot cooperation control for construction robot through experiments on a 2DOF manipulator.

Human Assisted Fitting and Matching Primitive Objects to Sparse Point Clouds for Rapid Workspace Modeling in Construction Automation (-건설현장에서의 시공 자동화를 위한 Laser Sensor기반의 Workspace Modeling 방법에 관한 연구-)

  • KWON SOON-WOOK
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.151-162
    • /
    • 2004
  • Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate computational tractability. In this research, a human operator's ability to quickly evaluate and associate objects in a scene is exploited. The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions.

The Application of Project control Techniques to Process Control: The Effect of Temporal Information on Human Monitoring Tasks

  • Parush, A.;Shtub, A.;Shavit, D.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • We studied the use of time-related information, with and without prediction, to support human operators performing moni-toring and control tasks in the process. Based on monitoring and control techniques used for Project Management we developed a display design for the process industries. A simulated power plant was used to test the hypothesis that availability of predictions along with information on past trends can improve the performances of the human operator handling faults. Several designs of dis-plays were tested in the experiment in which human operators had to detect and handle two types of faults(local and systems wide) in the simulated electricity generation process. Analysis of the results revealed that temporal data, with and without prediction, signifi-cantly reduced response time. Our results encourage the integration of temporal information and prediction in displays used for the control processes to enhance the capabilities of the human operators. Based on the analysis we proposed some guidelines for the de-signer of the human interface of a process control system.

  • PDF

Teleoperator Control Systems with Short Time Delay (시간 지연을 포함한 원격제어 시스템)

  • 장진규;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.721-724
    • /
    • 2000
  • This paper has been demonstrated to be essential to successful telemanipulator control when the communication delay between master arms in the operator control station and telemanipulators in the remote site. This paper includes the human dynamics to generate a control command, the monitoring force feedback in order to robust under short time delays and the controller not to requre the derivative of interaction forces. Simulation results suggest that, the proposed control system should be superior to conventional systems in terms of performance and robustness under short time delays.

  • PDF

Development of Adaptive Ground Control System for Multi-UAV Operation and Operator Overload Analysis (복수 무인기 운용을 위한 적응형 지상체 개발 및 운용자 과부하 분석)

  • Oh, Jangjin;Choi, Seong-Hwan;Lim, Hyung-Jin;Kim, Seungkeun;Yang, Ji Hyun;Kim, Byoung Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.529-536
    • /
    • 2017
  • The general ground control system has control and information display functions for the operation of a single unmanned aerial vehicle. Recently, the function of the single ground control system extends to the operation of multiple UAVs. As a result, operators have been exposed to more diverse tasks and are subject to task overload due to various factors during their mission. This study proposes an adaptive ground control system that reflects the operator's condition through the task overload measurement of multiple UAV operators. For this, the ground control software is developed to control multiple UAVs at the same time, and the simulator with six degree-of-freedom aircraft dynamics is constructed for realistic human-machine-interface experiments by the operators.