• Title/Summary/Keyword: human non-small-cell lung cancer cells

Search Result 109, Processing Time 0.034 seconds

Anticancer Activity of Taxillus yadoriki Parasitic to Neolitsea sericea against Non-Small Cell Lung Carcinoma

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.93-93
    • /
    • 2019
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of branches from Taxillus yadoriki parasitic to Neolitsea sericea (TN-NS-B) against human lung cancer cells, A549. TY-NS-B dose-dependently suppressed the growth of A549 cells. TY-NS-B decreased ${\beta}$-catenin protein level, but not mRNA level in A549 cells. The downregulation of ${\beta}$-catenin protein level by TY-NS-B was attenuated in the presence of MG132. Although TY-NS-B phosphorylated ${\beta}$-catenin protein, the inhibition of $GSK3{\beta}$ by LiCl did not blocked the reduction of ${\beta}$-catenin by TY-NS-B. In addition, TY-NS-B decreased ${\beta}$-catenin protein in A549 cells transfected with Flag-tagged wild type ${\beta}$-catenin or Flag-tagged S33/S37/T41 mutant ${\beta}$-catenin construct. Our results suggested that TN-NS-B may downregulate ${\beta}$-catenin protein level independent on GSK3${\beta}$-induced ${\beta}$-catenin phosphorylation. Based on these findings, TY-NS-B may be a potential candidate for the development of chemopreventive or therapeutic agents for human lung cancer.

  • PDF

Reversal of Cisplatin Resistance by Epigallocatechin Gallate Is Mediated by Downregulation of Axl and Tyro 3 Expression in Human Lung Cancer Cells

  • Kim, Kyung-Chan;Lee, ChuHee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • Lung cancer is still the number one cause of death from cancer worldwide. The clinical effect of platinum-based chemotherapy for non-small cell lung cancer is constrained by the resistance to drug. To overcome chemo-resistance, various modified treatment including combination therapy has been used, but overall survival has not been improved yet. In this study, chemo-resistant lung cancer cells, A549/Cis and H460/Cis, were developed by long-term exposure of cells to cisplatin and the proliferative capability of these resistant cells was verified to be reduced. We found cytotoxic effect of epigallocatechin gallate (EGCG), a major catechin derived from green tea, on both the parental lung cancer cells, A549 and H460, and their cisplatin resistant cells, A549/Cis and H460/Cis. ELISA and Western blot analysis revealed that EGCG was able to increase interlukine-6 (IL-6) production per cell, whereas its downstream effector Signal transducers and activators of transcription 3 (STAT3) phosphorylation was not changed by EGCG, indicating that IL-6/STAT3 axis is not the critical signaling to be inhibited by EGCG. We next found that EGCG suppresses the expression of both Axl and Tyro 3 receptor tyrosine kinases at mRNA and protein level, explaining the cytotoxic effect of EGCG on lung cancer cells, especially, regardless of cisplatin resistance. Taken together, these data suggest that EGCG impedes proliferation of lung cancer cells including their chemo-resistant variants through downregulation of Axl and Tyro 3 expression.

Effects of Arsenic Compounds $(AS_2O_3\;and\;AS_4O_6)$ on the Induction of Apoptotic Cell Death in A549 Human Non-small Cell Lung Cancer Cells (비소화합물에 의한 A549 폐암세포의 증식억제에 관한 연구)

  • Choi, Yung-Hyun;Choi, Woo-Young;Choi, Byung-Tae;Lee, Yong-Tae;Lee, Won-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1050-1054
    • /
    • 2005
  • Recently, arsenic compounds were considered as novel agents for treatment of acute promyelocytic leukemia and malignant tumors. However, it showed severe toxicity effect on normal tissue at the same time. In this study, to investigate the possible molecular mechanism (s) of arsenic compounds as candidate of anti-cancer drugs, we compared the abilities of two arsenic compounds, tetraarsenic oxide $(AS_4O_6)$ and arsenic trioxide (diarsenic oxide, $As_2O_3$), to induce cell growth inhibition as well as apoptosis induction in A549 human non-small cell lung cancer cells. Both $As_4O_6\;and\;As_2O_3$ treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of G1 arrest of the cell cycle and apoptotic cell death. However, $As_4O_6$ induced growth inhibition and apoptosis in A549 cells at much lower concentrations than $As_2O_3.\;As_4O_6$ down-regulated the levels of anti-apoptotic Bcl-2 protein, however, the levels of Bax, a pro-apoptotic protein, were up-regulated in a dose-dependent manner. In conclusion, $As_4O_6$ might be a new arsenic compound which may induce apoptosis in A549 cells by modulation the Bcl-2 family and deserves further evaluation.

An Aqueous Extract of a Bifidobacterium Species Induces Apoptosis and Inhibits Invasiveness of Non-Small Cell Lung Cancer Cells

  • Ahn, Joungjwa;Kim, Hyesung;Yang, Kyung Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.885-892
    • /
    • 2020
  • Chemotherapy regimens for non-small cell lung cancer (NSCLC) have various adverse effects on the human body. For this reason, probiotics have received attention regarding their potential value as a safe and natural complementary strategy for cancer prevention. This study analyzed the anticancer effects of aqueous extracts of probiotic bacteria Bifidobacterium bifidum (BB), Bifidobacterium longum (BL), Bifidobacterium lactis (BLA), Bifidobacterium infantis 1 (BI1), and Bifidobacterium infantis 2 (BI2) on NSCLC cell lines. When the aqueous extracts of probiotic Bifidobacterium species were applied to the NSCLC cell lines A549, H1299, and HCC827, cell death increased considerably; in particular, the aqueous extracts from BB and BLA markedly reduced cell proliferation. p38 phosphorylation induced by BB aqueous extract increased the expression of cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP), consequently inducing the apoptosis of A549 and H1299 cells. When the p38 inhibitor SB203580 was applied, phosphorylation of p38 decreased, and the expression of cleaved caspase 3 and cleaved PARP was also inhibited, resulting in a reduction of cell death. In addition, BB aqueous extracts reduced the secretion of MMP-9, leading to inhibition of cancer cell invasion. By contrast, after transfection of short hairpin RNA shMMP-9 (for a knockdown of MMP-9) into cancer cells, BB aqueous extracts treatment failed to suppress the cancer cell invasiveness. According to our results about their anticancer effects on NSCLC, probiotics consisting of Bifidobacterium species may be useful as adjunctive anticancer treatment in the future.

The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector (Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1271-1284
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ cDNA transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate whether the levels of TNF receptor mRNA expression and soluble TNF receptor release from cancer cells are changed after TNF-$\alpha$ cDNA transfection. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, EUSA, MTT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and evaluated the TNF receptor mRNA expression with Northern blot analysis and soluble TNF receptor release with EUSA. Results : The TNF receptor mRNA expressions of parental cells and genetically modified cells were not significantly different. The soluble TNF receptor levels of media from genetically modified cells were lower than those from parental cells. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the TNF receptor and the soluble TNF receptor expression.

  • PDF

Targeted Efficacy of Dihydroartemisinin for Translationally Controlled Protein Expression in a Lung Cancer Model

  • Liu, Lian-Ke;Wu, Heng-Fang;Guo, Zhi-Rui;Chen, Xiang-Jian;Yang, Di;Shu, Yong-Qian;Zhang, Ji-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2511-2515
    • /
    • 2014
  • Objective: Lung cancer is one of the malignant tumors with greatest morbidity and mortality around the world. The keys to targeted therapy are discovery of lung cancer biomarkers to facilitate improvement of survival and quality of life for the patients with lung cancer. Translationally controlled tumor protein (TCTP) is one of the most overexpressed proteins in human lung cancer cells by comparison to the normal cells, suggesting that it might be a good biomarker for lung cancer. Materials and Methods: In the present study, the targeted efficacy of dihydroartemisinin (DHA) on TCTP expression in the A549 lung cancer cell model was explored. Results and Conclusions: DHA could inhibit A549 lung cancer cell proliferation, and simultaneously up-regulate the expression of TCTP mRNA, but down-regulate its protein expression in A549 cells. In addition, it promoted TCTP protein secretion. Therefore, TCTP might be used as a potential biomarker and therapeutic target for non-small cell lung cancers.

Influence of Cathepsin D Expression on Prognosis in Non-Small Cell Lung Cancer (Cathepsin D의 발현이 비소세포 폐암의 예후에 미치는 영향)

  • Youm, Hyung-Roul;Myeong, Jae-Il;Lim, Jong-Chul;Kim, Han-Kyun;Lee, Nam-Hun;Lee, Dae-Ho;Ko, Hyang-Mee;Moon, Jong-Yeoung;Kang, Heon-Seok;Rheu, Heong-Seon;Kim, Wan;Park, Chang-Soo;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.1
    • /
    • pp.60-71
    • /
    • 2000
  • Backgrounds : Cathepsin D, an aspartic lysosomal proteinase, is believed to be involved in local invasion and metastasis of tumor cells by its proteolytic activity and has been described to be associated with tumor progression and prognosis in some human malignancies including breast cancer. But, its prognostic value for human lung cancer remains to be determined. The purpose of this study is to determine clinicopathological and prognostic significance of cathepsin D expression in non-small cell lung cancer. Method : Using a polyclonal antibody, immunohistochemical analysis of cathepsin D was performed on paraffin embedded sections of tumors obtained surgically from 54 patients with non-small cell lung cancer (37 squamous cell carcinoma, 14 adenocarcinoma, 2 large cell carcinoma, and 1 undifferentiated carcinoma). Results : Eighteen patients (33.3%) showed positive immunoreactivities of cathepsin D in tumor cells. No significant correlation of cathepsin D expression in tumor cells was found in p-stage (surgical-pathologic stage), tumor size, tumor factor, nodal involvement, and differentiation. Of 54 patients, 29 (53.7%) patients showed moderate to massive cathepsin D-positive stromal cells within the tumor tissues, while the rest (46.3%) showed few cathepsin D-positive stromal cells within the tumor tissues. Cathepsin D expression in stromal cells was significantly associated with p-stage in non-small cell lung canær (p=0.031). No significant correlation of the degree of cathepsin D-positive stromal cells was found in tumor size, T -factor, nodal involvement, differentiation Cathepsin D expression status in tumor cells and stromal cells was not significantly associated with prognosis expressed by survival rate. The results of multivariate analyses of variables possibly associated with prognosis showed that nodal involvement was the only independent prognostic factor in all patients. Conclusion : Cathepsin D expression in stromal cells was significantly associated with p-stage in non-small cell lung cancer. However, it was not related to other clinicopathologic features and prognosis, and Cathepsin D expression in tumor was not related to p-stage and prognosis.

  • PDF

The Effect of Abraxane on Cell Kinetic Parameters of HeLa Cells

  • Gurses, Nurcan;Topcul, Mehmet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4229-4233
    • /
    • 2013
  • Abraxane (nab-paclitaxel) is a member of the group of nano chemotherapeutics. It is approved for metastatic breast cancer and non small cell lung cancer. Trials for several cancer types including gynecological cancers, head and neck, and prostatic cancer are being studied. In this study, the antiproliferative and apoptotic effect of abraxane was evaluated on HeLa cell line originated from human cervix carcinoma. Three different doses ($D_1$=10 nM, $D_2$=50 nM, $D_3$=100 nM) were administered to HeLa cells for 24, 48 and 72 h. The 50 nM dose of abraxane decreased DNA synthesis from 4.62-0.08%, mitosis from 3.36-1.89% and increased apoptosis from 10.6-30% at 72 h. Additionally, tripolar metaphase plates were seen in mitosis preparations. In this study, abraxane effected cell kinetic parameters significantly. This results are consistent with other studies in the literature.

In vitro anticancer and antioxidant effects of acetone extract of Eucommia ulmoides oliver leaves (두충잎 아세톤 추출물의 in vitro 항암 및 항산화 효과)

  • In, Man-Jin;Kim, Eun Jeong;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • In vitro anticancer and antioxidant effects of acetone extract from leaves of Eucommia ulmoides Oliver were investigated. The extraction yield and total phenolic content of the acetone extract were $1.13{\pm}0.033%$ (w/w) and $36.7{\pm}1.96mg$ gallic acid equivalents/g-extract, respectively. $GI_{50}$ values of the acetone extract for human non-small cell lung cancer cells (A549), human colon cancer cells (SNU-C4), human cervical cancer cells (HeLa), and human embryonic lung epithelial cell (L132) were 53.4, 53.8, 88.3, and $153.9{\mu}g/mL$, respectively. The acetone extract effectively inhibited the proliferation of human non-small cell lung cancer (A549) and colon cancer (SNU-C4) cells in a concentration-dependent manner, but was less cytotoxic with human normal cells (L132). $EC_{50}$ values of the acetone extract for free radical scavenging, reducing power, and lipid peroxidation inhibition were about 2,000, 275.8, and $257.9{\mu}g/mL$, respectively. The acetone extract showed a potent reducing power and lipid peroxidation inhibitory activity in a concentration-dependent manner.

DNA-Damage Inducible 1 is a Property of Human Non-Small Cell Lung Cancer

  • Lee, Ji-Yeon;Kang, Eun-Sil;Lim, Beom-Jin;Chang, Yoon-Soo;Kim, Se-Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.2
    • /
    • pp.124-131
    • /
    • 2012
  • Background: DNA damage-inducible 1 (Ddi1), one of the ubiquitin-like and ubiquitin-associated family of proteins, may function in the regulation of the ubiquitin-proteasome pathway, which has been validated as a target for antineoplastic therapy. We investigated Ddi1 expression in human lung cancer tissues and evaluated the relationship of this expression pattern with clinicopathological factors in patients with non-small-cell lung cancer (NSCLC). Methods: Ddi1 expression was examined by immunohistochemistry in tumor tissues from 97 patients with stage I NSCLC, who had undergone curative surgical resection at two tertiary referral hospitals from 1993~2004. None of the patients received preoperative chemotherapy and/or radiation therapy. Results: Thirty-nine (40.2%) of the 97 cases were positive for Ddi1. Ddi1 expression was dominantly seen in cytoplasm rather than in the nuclei of cancer cells in all histological types, whereas adjacent nontumoral lung tissue showed negative Ddi1 staining in most cases. Ddi1 expression tended to increase in well-differentiated tumors but without statistical significance. Positive Ddi1 expression was associated with a tendency for better disease-free survival and disease-specific survival, although the difference was not significant. Conclusion: Ddi1 expression is a property of NSCLC. Because Ddi1 could be a potential target for cancer therapy, more research is needed to evaluate its role in NSCLC.