• Title/Summary/Keyword: human neutrophils

Search Result 120, Processing Time 0.034 seconds

Protective Effect of Taurine on Indomethacin-induced Gastric Mucosal Injury

  • Son, Miwon;Kim, Hee-Kee;Kim, Won-Bae;Yang, Junnick;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.85-90
    • /
    • 1996
  • It has been suggested that oxygen-derived free radicals play an important role in the pathophysiology of acute gastric ulceration induced by NSAIDs and ischemia-reperfusion. Taurine is hypothetized to exert its protective effect on NSAIDs-induced gastric injury by its antioxidant properties. Protective effect of taurine on indomethacin-induced gastric mucosal lesion and its protection mechanism were investigated. Intragastric administration of 25 mg/kg of indomethacin induced hemorrhagic lesions on the glandular stomach in rats. Pretreatment with 0.25 or 0.5 g/kg of taurine one day before or for 3 days significantly reduced the gastric lesion formation and inhibited the elevation of lipid peroxide level in gastric mucosa. The luminol-dependent chemiluminescence of rat peritoneal neutrophils increased immediately after treatment of FMLP or indomethacin. Taurine (5-20 mM) inhibited chemiluminescence of neutrophils activated by FMLP. Human neutrophils (polymorphonuclear leukocytes) significantly adhered to the confluent monolayer of human umbilical vein endothelial cells (HUVEC) after coincubation with indomethacin. This neutrophil adhesion induced by indomethacin to HUVEC was prevented by taurine in a dose-dependent manner. These results indicate that the protective effect of taurine against NSAIDs-induced gastric mucosal injury is due to its antioxidant effect, which inhibits lipid peroxidation and neutrophil activation.

  • PDF

Effects of Amitriptyline and Imipramine on Superoxide Generation, Myeloperoxidase Release, Leukotriene $B_4$ in Human Neutrophils (Amitriptyline과 Imipramine이 호중구에서의 Superoxide 생성, Myeloperoxidase 유리, Leukotriene $B_4$생성과 칼슘 동원에 나타내는 영향)

  • Shin Yong-Kyoo;Lee Chung-Soo;Lee Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.123-133
    • /
    • 1995
  • A number of tricyclic antidepressants appear to have inhibitory action on calmodulin. Although amitriptyline, imipramine and doxepine have been shown to inhibit calcium uptake, oxidative phosphorylation and ATPase activities, effects of amitriptyline, imipramine and doxepine on functional responses of human neutrophils have not been elucidated. In this study, effects amitriptyline, imipramine and doxepine on superoxide and hydrogen peroxide generation, myeloperoxidase release, leukocriene B4 formation and intracellular calcium level were investigated. Superoxide and hydrogen peroxide production in heat aggregated IgG-activated neutrophils were inhibited by amitriptyline, imipramine and doxepine. EDTA, EGTA, verapamil and bepredil inhibited heat aggregated IgG-induced superoxide production. Chlorpromazine, trifluoperazine, staurosporine and H-7 also inhibited it. PMA-induced superoxide production was inhibited by amitriptyline, imipramine, doxepine, chlorpromazine and H-7. Amitriptyline, imipramine, chlorpromazine and trifluoperazine inhibited the myeloperoxidase release by heat aggregated IgG. Productions of $LTB_4$, and 5-HETE in heat aggregated IgG-activated neutrophils were inhibited by amitriptyline, imipramine and doxepine. In neutrophils, elevation of intracellular calcium induced by heat aggregated IgG was inhibited by amitriptyline, imipramine, doxepine, chlorpromazine and EGTA, while verapamil slightly inhibited increase of intracellular calcium and H-7 did not inhibit it. These results suggest that the inhibitory effect of amitriptyline, imipramine and doxepine on respiratory burst, myeloperoxidase release and LTB4 production in heat aggregated IgG-activated neutrophils appears to be ascribed to the inhibition of calcium mobilization, calmodulin and protein kinase C.

  • PDF

Alteration of Biochemical Responses in Activated Human Neutrophils by ATP and Adenosine (활성화된 사람 중성 백혈구에서 ATP와 Adenosine 처리에 따른 생화학적 반응의 변경)

  • Park, Sung-Soo;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.55-66
    • /
    • 1990
  • In both resting and opsonized zymosan activated neutrophils, ATP stimulated superoxide generation, whereas adenosine inhibited it slightly. The superoxide generation in activated neutrophils to ATP was greater than that of resting neutrophils. In $Ca^{++}$ free medium, inhibitory effect of adenosine on superoxide generation was detectable, whereas ATP did not have any effect. The stimulatory effect of ATP on superoxide generation was inhibited by adenosine in a dose dependent manner. Neither ATP nor adenosine had any effect on NADPH oxidase acitivity. Effects of ATP or adenosine on superoxide generation were more prominent than that by other triphosphate nucleotides or nucleosides. ATP and ADP further stimulated $Ca^{++}$ uptake and increased cytosolic free $Ca^{++}$ level in neutrophils activated by opsonized zymosan, but adenosine inhibited a $Ca^{++}$ mobilization. Verapamil effectively and tetrodotoxin slightly inhibited an increase of cytosolic free $Ca^{++}$ level induced by ATP. Inhibitory effect of either verapamil or tetrodotoxin on superoxide generation in the ATP plus opsonized zymosan-activated neutrophils was greater than in the cells activated by opsonized zymosan alone. Tetraethylammonium chloride had no apparent effect on superoxide generation. CCCP, 2,4-dinitrophenol, diphenylhydantoin and procaine all inhibited superoxide generation in neutrophils activated by opsonized zymosan. Among these, CCCP only inhibited a stimulatory effect of ATP. ATP further stimulated a loss of sulfhydryl groups in activated neutrophils, whereas adenosine had no effect on it. These results suggest that functional responses of neutrophils may be regulated at least partly by purines. ATP and adenosine may further after functional responses of activated neutrophils through their effect on $Ca^{++}$ uptake, membrane phosphorylation and oxidation of soluble sulfhydryl groups.

  • PDF

Role of Retinoic Acid in Spontaneous Apoptosis of Human Neutrophils

  • Yang, Eun-Ju;Lee, Ji-Sook;Kim, Dong-Hee;Min, Bok-Kee;Hyun, Sung-Hee;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • Although retinoic acid has been known as either anti-inflammatory or pro-inflammatory molecule, depending on the cell type, its exact role in mature human neutrophils has not been fully explored. In this study, we investigate the effects of retinoic acid on neutrophil apoptosis and the associated mechanism and found that 9-cis retinoic acid (9CRA) significantly inhibits the spontaneous apoptosis of neutrophils. Its effect is increased by co-treatment with $TNF-\alpha$ (P<0.05). The 9CRA-induced inhibition is blocked by the following enzyme inhibitors: Ly 294002, phosphoinoside (PI)-3 kinase inhibitor, U73122, a phospholipase C (PLC) inhibitor, PP2, Src family protein inhibitor, SB202190, p38 MAPK inhibitor, and BAY-11-7085, NF-kB inhibitor. This study also demonstrates that all-trans retinoic acid suppresses spontaneous apoptosis, similar to the mechanism of inhibition exhibited by 9CRA. Phosphorylation of p38 MAPK decreases by 9CRA treatment. $Ik-B{\alpha}$ is degraded until 30 minutes after a time-dependent 9CRA treatment, but degradation can be inhibited by Ly 294002. These results indicate that 9CRA decreases p38 MAPK activation, induces NF-kB activation via PI-3 kinase, and also blocks cleavage of caspase 3. As these findings suggest, 9CRA has a molecular mechanism which may help pro-inflammatory response by blocking neutrophil apoptosis.

  • PDF

Effects of Protein Kinase G on Phospholipase D Activity of Human Neutrophils (호중구에서 phospholipase D의 활성에 대한 protein kinase G의 영향)

  • 박지연;이민정;장민정;이선영;배외식;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.903-910
    • /
    • 2003
  • Phospholipase D (PLD) plays an important role as a signaling molecule in the activation of neutrophils. In this study, effect of nitric oxide (NO) and cGMP on the activation of PLD in human neutrophils was investigated. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased PLD activity and the maximal activation was obtained with 0.5 mM SNP. Dibutyryl-cAMP, an agent to increase an intracellular cAMP concentration inhibited formyl-Met-Leu-Phe (fMLP)-stimulated PLD activity but 8-bromo-cGMP (300 $\mu$M), an agent to increase an intracellular cGMP concentration did not affect basal and fMLP-stimulated PLD activity. NO-induced activation of PLD was not blocked by KT 5823, an inhibitor of cGMP-dependent protein kinase (PKG), suggesting that NO-induced PLD activation is not mediated by cGMP. NO also stimulated p38 mitogen activated protein kinase (MAPK) in human neutrophils, indicated by increased phosphorylation of p38 MAPK in Western blotting. NO-induced phosphorylation of p38 MAPK was not inhibited by KT 5823 or n-butanol. RhoA, an regulatory factor of PLD activation was trans-located from cytosolic fraction to plasma membranes by fMLP or phorbol ester, and fMLP-stimulated but not phorbol ester-stimulated translocation of RhoA was inhibited by cGMP. These results suggest that NO stimulates PLD activity through other unidentified facto.(s) than cGMP even though cGMP inhibits the artivation of RhoA.

Induction of Spontaneous Neutrophil Apoptosis by 4-O-Methyl-Ascochlorin, A Prenyl Phenol Compound (프레닐 페놀계 항생제인 4-O-methyl-ascochlorin에 의한 호중구 세포사멸의 유도)

  • Son Dong-Aoon;Lee Sun-Young;Lee Min-Jung;Park Joo-In;Hong Young-Seob;Lee Yong-Hwan;Chang Young-Chae;Kwak Jong-Young
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Neutrophils are short-lived leukocytes that play a vital role in immune responses to bacteria, yeast, and fungi. This study was performed to investigate the effect of 4-O-methyl-ascochlorin (MAC), an anti-tumor, antibiotic, and anti-fungal prenyl-phenol compound on the spontaneous apoptosis of human neutrophils. MAC time- and dose-dependently accelerated the spontaneous apoptosis of human neutrophils. The effect of MAC on neutrophil apoptosis was blocked by pre-treatment of the neutrophils with specific inhibitors of pancaspase (zVAD-fmk), caspase-8 (zIETD-fmk), or caspase-3 (zDEVD-fmk). The cleavage of procaspase-8 and procaspase-3 was increased by MAC. Mitochondrial permeability, which was measured by the retention of $DiOC_6(3)$, was dose-de-pendently increased by MAC but the change of mitochondrial permeability was not blocked by pretreatment of neutrophils with zIETD-fmk. These results suggest that MAC induces neutrophil apoptosis by caspase-8-dependent but mitochondria-independent manner.

Study on Anti-thrombotic Activity, Superoxide Generation in Human Neutrophils and Platelet Aggregation in Human Blood of Hwao-tang

  • Park Won Hwan;Park Soo Young;Park Tae Woo;Kim Jong Gu;Kim Seog Ha;Kim Cherl Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1494-1504
    • /
    • 2004
  • The present paper reports the effects of Hwaotang an atherosclerosis using a spontaneous experimental model, We have also investigated the pharmacological effect of Hwaotang on collagen- and ADP-induced blood platelet aggregation, thrombin-induced conversion of fibrinogen and fibrinolysis in in vitro experiments, and various effects on stimuli-induced superoxide generation in human neutrophils. Hwao-tang was shown to have inhibitory effect on collagen- and ADP-induced blood platelet aggregation, on thrombin-induced conversion of fibrinogen to fibrin and on the activity of plasminogen or plasmin. Hwao-tang also significantly inhibited fMLP-induced superoxide generation in a concentration-dependent manner, but not that induced by arachidonic acid. Hwao-tang inhibited neutrophil functions, including degranulation, superoxide generation, and leukotriene B4 production, without any effect on 5-lipoxygenase activity. In conclusion, the protection of extracts of Hwao-tang on the ischemic infarction induced artificially might be involved to their inhibition of thrombotic action. The results also indicate that Hwao-tang exerts the effects on superoxide generation related to the inhibition of neutrophil functions.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

Effects of Calcium Antagonists on Superoxide Generation, NADPH Oxidase Activity and Phagocytic Activity in Activated Neutrophils (칼슘 길항제가 활성화된 호중구에서의 $O_{\overline{2}}$의 생성, NADPH oxidase활성도 및 탐식작용에 미치는 영향)

  • Lee, Chung-Soo;Han, Eun-Sook;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.33-44
    • /
    • 1987
  • NADPH oxidase dependent superoxide generation and phagocytosis in neutrophils stimulated with opsonized zymosan or heat aggregated IgG were coincided with the process of calcium uptake. The responses in activated neutrophils were enhanced with increasing concentrations of extracellular calcium and these effects were significantly inhibited by calcium chelators, EGTA and EDTA. The superoxide generation in activated neutrophils was reduced by dantrolene and chlorpromazine. Calcium antagonists, bepredil, diltiazem, verapamil, nifedipine and nimodipine effectively inhibited the calcium uptake, superoxide generation and phagocytosis in activated neutrophils, and NADPH oxidase activity was also inhibited. The results suggest that calcium antagonists may inhibit the superoxide generation and phagocytosis in activted neurtophils by the inhibition of calcium influx and by the action on intracellular redistribution of calcium and NADPH oxidase system.

  • PDF