• Title/Summary/Keyword: human microbiota

Search Result 122, Processing Time 0.029 seconds

Effect of Probiotics on Risk Factors for Human Disease: A Review (인간 질병의 위험 요인에 대한 Probiotics의 효과: 총설)

  • Chon, Jung-Whan;Kim, Dong-Hyeon;Kim, Hyun-Sook;Kim, Hong-Seok;Hwang, Dae-Geun;Song, Kwang-Young;Yim, Jin-Hyuk;Choi, Dasom;Lim, Jong-Soo;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.17-29
    • /
    • 2014
  • GRAS probiotics can be used to modulate intestinal microbiota and to alleviate various gastrointestinal disorders. In several recent studies, researchers have explored the potential expansion and usability of probiotics to reduce the risk factors associated with diseases, including obesity, hypercholesterolemia, arterial hypertension, hyperhomocysteinemia, and oxidative stress. In this review, our aim was to clarify the mechanism underlying interactions between hosts (animal or human) and probiotics and the beneficial effects of probiotics on human health.

  • PDF

Dairy Products Intake and Managing Diabetes (유제품 섭취와 당뇨 예방)

  • Kim, Min-Kyung;Choi, Ah-Ri;Han, Gi-Sung;Jeong, -Seok-Geun;Oh, Mi-Hwa;Kim, Dong-Hun;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Milk intake is widely recommended for healthy diet, not only for bone growth and maintenance, but also as a protein, calcium and magnesium sources as part of an adequate diet. Many research suggest that milk and dairy products are associated with a lower risk of type 2 diabetes mellitus (T2DM). Milk and dairy products are low Glycemic index (GI) and Glycemic load (GL) foods. The GI and GL are useful tools to choose foods to help control blood glucose levels in people with diabetes. The GI and GL of milk are 32~42 and 4~5, respectively, and which are about 1/2 and 1/5 of boiled rice. The mechanisms underlying the effects of dairy on T2DM development includes the calcium and vitamin D content in dairy foods and the possible positive effect of high milk and calcium intake on weight control. The role of dairy products on reducing the risk of diabetes can be inferred from the reports that lower serum IGF-1 levels were positively associated with diabetes and the girls with low milk intake had significantly lower IGF-1. Accumulating data from both patients and animal models suggest that microbial ecosystems associated with the human body, especially the gut microbiota, may be associated with several important diseases, such as inflammatory bowel disease, obesity, diabetes and cardiovascular disease. It was thought that fermented milk containing lots of probiotics can be useful for controling blood glucose levels and preventing complication of diabetes, but sucrose in commercial yogurt should be substituted. There are some reports of oligosaccharide, xylitol, and stevia as a potentially useful sweetener in the diabetic diet.

  • PDF

Effect of caffeine on the antibacterial activity of Lactobacillus casei: caffeine and antibacterial activity of L. casei

  • Jang, Eunjeong;Park, Jin A;Kim, Young Ha;Kim, Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.981-989
    • /
    • 2019
  • Coffee is a popular beverage worldwide, and the scale of consumption is growing rapidly. Many studies have shown that increased coffee consumption has various effects on human health, including beneficial effects on liver diseases, clinical type 2 diabetes, and Parkinson's disease. However, the influences of coffee or caffeine (a component of coffee) on the gut microbiota have not been examined in detail. Here, we tested whether caffeine could alter the antimicrobial activity of L. casei against E. coli. Interestingly, we found that treatment with 0.3 mg/mL caffeine increased the antimicrobial activity of L. casei against E. coli. This activity was not associated with the release of lactic acid but did appear to be related to a heat-labile factor present in the L. casei culture supernatant. Our analyses suggest that the putative antimicrobial factor found in the culture supernatant of L. casei treated with caffeine may be bacteriocin. Taken together, our results suggest that caffeine, which is an ingredient of coffee, increases the antimicrobial activity of L. casei against E. coli through the enhanced production of bacteriocin. These findings also suggest that coffee consumption affects the ability of beneficial bacteria to decrease pathogenic bacteria and/or prevent the progression of bacterial infection-associated diseases in the gut.

Supragingival Plaque Microbial Community Analysis of Children with Halitosis

  • Ren, Wen;Zhang, Qun;Liu, Xuenan;Zheng, Shuguo;Ma, Lili;Chen, Feng;Xu, Tao;Xu, Baohua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2141-2147
    • /
    • 2016
  • As one of the most complex human-associated microbial habitats, the oral cavity harbors hundreds of bacteria. Halitosis is a prevalent oral condition that is typically caused by bacteria. The aim of this study was to analyze the microbial communities and predict functional profiles in supragingival plaque from healthy individuals and those with halitosis. Ten preschool children were enrolled in this study; five with halitosis and five without. Supragingival plaque was isolated from each participant and 16S rRNA gene pyrosequencing was used to identify the microbes present. Samples were primarily composed of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Candidate phylum TM7. The ${\alpha}$ and ${\beta}$ diversity indices did not differ between healthy and halitosis subjects. Fifteen operational taxonomic units (OTUs) were identified with significantly different relative abundances between healthy and halitosis plaques, and included the phylotypes of Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, and Capnocytophaga ochracea. We suggest that these OTUs are candidate halitosis-associated pathogens. Functional profiles were predicted using PICRUSt, and nine level-3 KEGG Orthology groups were significantly different. Hub modules of co-occurrence networks implied that microbes in halitosis dental plaque were more highly conserved than microbes of healthy individuals' plaque. Collectively, our data provide a background for the oral microbiota associated with halitosis from supragingival plaque, and help explain the etiology of halitosis.

Correlation between Disease Occurrences and Microbial Community Structure by Application of Organic Materials in Pepper (유기농자재 사용에 따른 고추 병해 발생과 토양 미생물상 구조의 상관관계)

  • Cho, Gyeongjun;Kim, Seong-Hyeon;Lee, Yong-Bok;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.202-209
    • /
    • 2020
  • Organic farming is necessary to sustainable agriculture, preserve biodiversity and continued growth the sector in agriculture. In organic farming, reduced usage of chemical agents that adversely affect human health and environment, employing amino acids and oil cake fertilizer, plant extracts, and microbial agents are used to provide safe agricultural products to consumers. To investigation microbiome structure, we proceeded on the pepper plant with difference fertilizers and treatments in organic agriculture for three years. The microbial communities were analyzed by the next generation sequencing approach. Difference soil microbiota communities were discovered base on organic fertilizer agents. Occurrences of virus and anthracnose diseases had a low incidence in conventional farming, whereas bacteria wilt disease had a low incidence in microbial agents treated plots. Microbe agents, which applied in soil, were detected in the microbial community and the funding suggested the applied microbes successfully colonized in the organic farming environment.

Etiological and pathophysiological enigmas of severe coronavirus disease 2019, multisystem inflammatory syndrome in children, and Kawasaki disease

  • Rhim, Jung-Woo;Kang, Jin-Han;Lee, Kyung-Yil
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.4
    • /
    • pp.153-166
    • /
    • 2022
  • During the coronavirus disease 2019 (COVID-19) pandemic, a novel multisystem inflammatory syndrome in children (MIS-C) has been reported worldwide since the first cases were reported in Europe in April 2020. MIS-C is temporally associated with severe acute respiratory syndrome coronavirus 2 infection and shows Kawasaki disease (KD)-like features. The epidemiological and clinical characteristics in COVID-19, KD, and MIS-C differ, but severe cases of each disease share similar clinical and laboratory findings such as a protracted clinical course, multiorgan involvement, and similar activated biomarkers. These findings suggest that a common control system of the host may act against severe disease insult. To solve the enigmas, we proposed the protein-homeostasis-system hypothesis in that every disease involves etiological substances and the host's immune system controls them by their size and biochemical properties. Also, it is proposed that the etiological agents of KD and MIS-C might be certain strains in the microbiota of human species and etiological substances in severe COVID-19, KD, and MIS-C originate from pathogen-infected cells. Since disease severity depends on the amounts of inflammation-inducing substances and corresponding immune activation in the early stage of the disease, an early proper dose of corticosteroids and/or intravenous immunoglobulin (IVIG) may help reduce morbidity and possibly mortality among patients with these diseases. Corticosteroids are low cost and an analogue of host-origin cortisol among immune modulators. This study's findings will help clinicians treating severe COVID-19, KD, and MIS-C, especially in developing countries, where IVIG and biologics supplies are insufficient.

A Study on the Features and Functions of A2 Milk (A2유형 우유의 특성과 기능)

  • Eun-Tae Kim;Sung-Yong Joo;Seung-Jun Lee;Jun-Sik Eom;Dong-Hyun Lim;Ha-Young Choi;Yu-Ri Lee;Sae-Ha Lim;Sang Hun Park;Sang-Bum Kim;Myunghoo Kim;Tai-Young Hur
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.23-34
    • /
    • 2024
  • Milk, which is often referred to as a healthy beverage, is the first food encountered at birth. During digestion, A1-type milk often leads to digestive disorders due to increased levels of 𝛽-casomorphin-7. It also tends to induce inflammatory responses in the gut immune system by altering the gut microbiota and triggering conditions such as diabetes and respiratory hypersensitivity. In contrast, A2-type milk is gaining attention because of fewer associated problems than A1 milk and its unique functional benefits. However, information on the efficacy of A2 milk relies primarily on limited clinical and animal trial data, and substantiating its efficacy and functional superiority remains a challenge. Therefore, various studies, including research on the distinctive efficacy and functions of A2 milk compared with conventional A1 milk and investigations into the mechanisms underlying its effects on human health following consumption, are necessary in the future.

Effect of administration of synbiotics mixture containing Bifidobacterium longum and xylooligosaccharide on fecal microbiota and defecation characteristics in healthy volunteers (Bifidobacterium longum과 자일로올리고당을 포함한 synbiotics 섭취가 건강한 성인의 변내 균총과 배변 상태에 미치는 영향)

  • Lee, Jung-Sug;Park, Hyoung-Seop;Kyung, Myungok;Jo, Sung-Eun;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.53 no.4
    • /
    • pp.390-405
    • /
    • 2020
  • Purpose: The effect of prebiotics intake after administration of a synbiotics mixture (a probiotic, Bifidobacterium longum, and a prebiotic, xylooligosaccharide containing sugar [XOS]) on human intestinal microflora and defecation characteristics was investigated in a randomized controlled trial. Methods: Twenty-five healthy young volunteers (11 males and 14 females) were randomly assigned to 2 groups (BL2XO2 and BL2XO6). The synbiotics mixture was orally administered to both groups for 2 weeks, and the prebiotics were subsequently administered to the BL2XO6 group for 4 additional weeks. The daily dose of the synbiotics mixture comprised 1010 colony-forming unit of Bifidobacterium longum and 10 g of XOS, and during the prebiotics period, the daily dose of prebiotics comprised only 10 g of XOS. The fecal pH, microflora, and defecation characteristics were analyzed at baseline and at weeks 1, 2, 4, and 6. Results: The counts of B. longum and Bifidobacterium spp. in the BL2XO6 group exhibited a steady, increasing trend during the synbiotics and prebiotics periods, whereas those of the BL2XO2 group exhibited considerable variation in each week of the study period. Although there was no significant difference, the counts of fecal Bifidobacterium in the BL2XO6 group tended to be higher than those of the BL2XO2 group at week 6. The growth of Lactobacillus spp. exhibited a time-dependent variation, peaking at week 6 in both groups. Low counts of Clostridium spp. were observed after treatment with the synbiotics and prebiotics in the BL2XO6 group (p < 0.05) throughout the study, whereas the inhibitory effect on Clostridium spp. was maintained only during the synbiotics period in the BL2XO2 group. The defecation characteristics did not differ between the two groups. Conclusion: Administration of XOS after a synbiotics mixture containing B. longum and XOS can exert a prebiotic effect in healthy young volunteers by stimulating Bifidobacteriun spp. growth and inhibiting growth of Clostridium spp.

Current research status and analysis methods on the effects of food surface properties on particulate matter adsorption (식품 표면 특성에 따른 미세먼지 흡착 연구 현황 및 분석 방법)

  • Lim, Dayoung;Park, Sun-Young;Lee, Dong-Un;Chung, Donghwa
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.11-28
    • /
    • 2021
  • Air pollution caused by particulate matters (PM) has become a global issue. PM is known to threaten human health by causing respiratory and cardiovascular disease. PM can be introduced to human gastrointestinal track through food intake, causing inflammation and changes in gut microbiota. Even at low PM concentrations, prolonged exposure to PM can cause significant accumulation of PM in food products. The adsorption of PM onto food surfaces is expected to be strongly influenced by the properties of food surfaces, but few studies have been reported. This paper examines several important food surface properties that may affect the interactions between PM and food surfaces, including surface wettability, surface charge, and surface microstructure. Understanding the adsorption of PM onto food surfaces can provide useful guidance for classifying PM-sensitive foods and controlling food chains, including cultivation, processing, preservation, and cooking, to ensure food safety against PM.

Insights into the Roles of Prebiotics and Probiotics in the Large Intestine (대장에서 prebiotics와 probiotics 역할에 대한 조명)

  • An, Su Jin;Kim, Jae Yeong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1295-1303
    • /
    • 2013
  • According to facts revealed up until the present, there are a total of 68 known phyla on earth, including 55 phyla of bacteria and 13 phyla of archaea. The human large intestine has 9 phyla of microorganisms, which is a relatively lower diversity compared to the general environments of soil or sea. The diversity of intestinal microorganisms is affected by the characteristics of the host (genetic background, sex, age, immune system, and gut motility), the diet (non-digestible carbohydrates, fat, prebiotics, probiotics), and the intake of antibiotics, which in turn have an effect on energy storage processes, gene expressions, and even metabolic diseases like obesity. Probiotics are referred to as living microorganisms that improve the intestinal microbiota and contribute to the health of the host; in addition, probiotics usually comprise lactic acid bacteria. Recently, bacteriotherapy using probiotics has been utilized to treat sicknesses like diarrhea and irritable bowel syndrome. Prebiotics are a food ingredient which can selectively adjust intestinal microorganisms and which comprise inulin, fructooligosaccharides, galactooligosaccharides, and lactulose. In recent days, attention has been paid to the use of dietary cellulose in the large intestine and the production of short chain fatty acids (short-chain fatty acids) in relation to obesity and anticancer. More research into microorganisms in the large intestine is necessary to identify specific microorganism species, which are adjusted by diverse non-digestible carbohydrates, prebiotics, and probiotics in the large intestine and to understand the connection between sicknesses and metabolites like short chain fatty acids produced by these microorganism species.