• Title/Summary/Keyword: human lung cancer

Search Result 773, Processing Time 0.035 seconds

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

Immunohistochemical Staining of Insulin-like Growth Factor-1 in Human Lung Cancer Cells (폐암의 조직학적 형태에 따른 인슐린양 성장인자-1의 면역조직학적 염색의 비교)

  • Park, Ji-Hyun;Kang, Myoung-Jae;Lee, Heung-Bum;Lee, Yong-Chul;Rhee, Yang-Kuen
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.3
    • /
    • pp.324-330
    • /
    • 2000
  • Objective : Lung cancer arises after a series of morphological changes, which take several years to progress from normal epithelium to invasive cancer. Multiple molecular changes and growth factor production have been documented in lung cancers, both small cell and non-small cell types. Insulin-like growth factors(IGFs) are important mitogenic and anabolic peptides, both in vivo and in vitro, and are thought to be significant autocrine-paracrine factors involved in normal and malignant cell proliferation. In this study, the degree of expression of IGF-1 on the immunohistochemical staining in human non-small cell lung cancer(NSCLC) cells and small cell lung cancer (SCLC) cells were investigated. Methods : Immunohistochemical staining for IGF-1 was performed in 15 cases of small cell carcinoma, 15 cases of squamous cell carcinoma, 15 cases of adenocarcinoma, and 12 cases of bronchoalveolar carcinoma. Results : The expression of IGF-1 on the immunohistochemical staining significantly increased in NSCLC cells than in SCLC cells. Conclusion : These results suggest the expression of IGF-1 in human lung cancer cells. The immunohistochemical staining of IGF-1 in lung cancer cell lines may assist in the differentiation of NSCLC and SCLC.

  • PDF

Radix Tetrastigma Hemsleyani Flavone Induces Apoptosis in Human Lung Carcinoma A549 Cells by Modulating the MAPK Pathway

  • Zhong, Liang-Rui;Chen, Xian;Wei, Ke-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5983-5987
    • /
    • 2013
  • Radix Tetrastigma Hemsleyani Flavone (RTHF) is widely used as a traditional herb for its detoxification and anti-inflammation activity. Recently, several studies have shown that RTHF can inhibit growth and induce apoptosis in human cancer cell lines. However, the mechanisms are not completely understood yet. In this study we investigated the potential effects of RTHF on growth and apoptosis in human lung adenocarcinoma A549 cells as well as its mechanisms. A549 cells were treated with RTHF at various concentrations for different times. In vitro the MTT assay showed that RTHF had obvious anti-proliferation effects on A549 cells in a dose- and time-dependent manner. Cell morphological changes observed by inverted microscope and Hoechst33258 methods were compared with apoptotic changes observed by fluorescence microscope. Cell apoptosis inspected by flow cytometry showed significant increase in the treatment group over the control group (P<0.01). Expression of apoptosis related Bax/Bcl-2, caspases and MAPK pathway proteins were detected by Western blotting. The results showed that RTHF up-regulated the Bax/Bcl-2 ratio and cle-caspase3/9, cle-PARP expression in a dose-dependent manner. Expression of p-p38 increased, p-ERK decreased significantly and that of p-JNK was little changed in the RTHF group when compared with the control group. These results suggest that RTHF might exert anti-growth and apoptosis activity against lung cancer A549 cells through activation of caspases and Bcl-2 family proteins and the MAPK pathway, therefore presenting as a promising therapeutic agent for the treatment of lung cancer.

Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases (Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도)

  • Kim, Hyun-Joong;Kim, Hong-Gi;Kim, Jin-Young;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.630-641
    • /
    • 2008
  • Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.

No Association between PIK3CA Polymorphism and Lung Cancer Risk in the Korean Population

  • Sung, Jae-Sook;Park, Kyong-Hwa;Kim, Seung-Tae;Seo, Jae-Hong;Shin, Sang-Won;Kim, Jun-Suk;Kim, Yeul-Hong
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.194-200
    • /
    • 2010
  • The PIK3CA gene, oncogenic gene located on human chromosome 3q26.3, is an important regulator of cell proliferation, death, motility and invasion. To evaluate the role of PIK3CA gene in the risk of Korean lung cancer, genotypes of the PIK3CA polymorphisms (rs11709323, rs2699895, rs3729679, rs17849074 and rs1356413) were determined in 423 lung cancer patients and 443 normal controls. Statistical analyses revealed that the genotypes and haplotypes in the PIK3CA gene were not significantly associated with the risk of lung cancer in the Korean population, suggesting that these PIK3CA polymorphisms do not contribute to the genetic susceptibility to lung cancer in the Korean population.

Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation (셀러리악 추출물의 암세포 증식 억제 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.179-183
    • /
    • 2021
  • This study was carried out examine the effect of Celeriac Extract, which contains various anticancer ingredients, on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The five cell lines used in the experiment were lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, breast cancer cells MCF-7, and liver cancer cells SNU-182. All cancer cells derived from the human body were used, and the inhibition of cancer cell proliferation with Celeriac Extract 10ug/mL, 100ug/mL, and 1000ug/mL was measured using the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Celeriac Extract 1000ug/mL showed significant proliferation inhibition in lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, and liver cancer cells SNU-182, and showed a concentration dependence. However, only a concentration-dependent decrease was observed in breast cancer cells MCF-7.In conclusion, it can be seen that the cell proliferation inhibition mechanisms of Celeriac Extract using various human-derived cancer cell lines provide the potential for cancer prevention and therapeutic development.

Anti-proliferative Effects of Cheonkumwikyung-tang In A549 Human Lung Carcinoma Cells (천금위경탕의 인체 폐암세포 증식억제에 관한 연구)

  • Park Bong Kyu;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1147-1152
    • /
    • 2004
  • To investigate the anti-cancer effects of aqueous extract of Cheonkumwikyung-tang (CKWKT) on the growth of human lung carcinoma cell line A549, we performed various biochemical experiments such as the effects of CKWKT on the cell proliferation and viability, the morphological changes, the effects on expression of apoptosis and cell growth-regulatory gene products. Results obtained are as follow; CKWKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effect by CKWKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CKWKT treatment induced apoptotic cell death of A549 cells in a concentration-dependent manner, which was associated with inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ1. Western blot analysis revealed that the levels cyclin-dependent kinase inhibitor p21 expression were induced by CKWKT treatment in A549 cells. Taken together, these findings suggest that CKWKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and CKWKT may have therapeutic potential in human lung cancer.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Alternative drug therapies are superior to epidermal growth factor receptor -targeted chemotherapeutic drug responses in non-small cell lung cancer

  • Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.10.1-10.8
    • /
    • 2013
  • Cancer is one of the major dreaded diseases causing high mortality. Lung cancer is second in position of all cancer related deaths and mainly divided into two morphologic sub-types: small-cell lung cancer and non-small cell lung cancer (NSCLC). NSCLC is an aggressive neoplasm which hardly responds to any conventional chemotherapy. Epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinase that is mainly over-expressed in NSCLC. EGFR is mainly involved in the pathogenesis and progression of different carcinoma. In vivo and in vitro studies suggest that EGFR and EGF like peptides are often over-expressed in human NSCLC and these proteins are able to induce cell transformation. The conventional therapies mostly inhibit the EGFR activity and expression level in human NSCLC with the use of some EGFR-inhibitors like HKI-272, EKB569, CL-387785 etc. and some synthetic chemotherapeutic drugs like erlotinib, gefitinib, plumbagin, docetaxel, cisplatin etc., alone or in combination of two or more drugs. These therapies selectively act by competitive inhibition of the binding of adenosine triphosphate to the tyrosine kinase domain of the EGFR, resulting in inhibition of the EGFR signaling pathway. But these chemotherapeutic drugs have some cytotoxic activities to the normal cells and have some adverse side-effects. Recent studies on some traditional alternative therapies including some herbal and plant extracts, active ingredients like curcumin, different homeopathic drugs, etc. can target EGFR-signalling in NSCLC with less toxic side-effects are being currently developed.

Hiwi Knockdown Inhibits the Growth of Lung Cancer in Nude Mice

  • Liang, Dong;Dong, Min;Hu, Lin-Jie;Fang, Ze-Hui;Xu, Xia;Shi, En-Hui;Yang, Yi-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1067-1072
    • /
    • 2013
  • Hiwi, a human homologue of the Piwi family, plays an important role in stem cell self-renewal and is overexpressed in various human tumors. This study aimed to determine whether an RNA interference-based strategy to suppress Hiwi expression could inhibit tumor growth in a xenograft mouse model. A rare population of $SSC^{lo}\;Alde^{br}$ cells was isolated and identified as lung cancer stem cells in our previous study. Plasmids containing U6 promoter-driven shRNAs against Hiwi or control plasmids were successfully established. The xenograft tumor model was generated by subcutaneously inoculating with lung cancer stem cell $SSC^{lo}\;Alde^{br}$ cells. After the tumor size reached about 8 mm in diameter, shRNA plasmids were injected into the mice via the tail vein three times a week for two weeks, then xenograft tumor growth was assessed. In nude mice, intravenously delivery of Hiwi shRNA plasmids significantly inhibited tumor growth compared to treatment with control scrambled shRNA plasmids or the vehicle PBS. No mice died during the experiment and no adverse events were observed in mice administered the plasmids. Moreover, delivery of Hiwi shRNA plasmids resulted in a significant suppressed expression of Hiwi and ALDH-1 in xenograft tumor samples, based on immunohistochemical analysis. Thus, shRNA-mediated Hiwi gene silencing in lung cancer stem cells by an effective in vivo gene delivery strategy appeared to be an effective therapeutic approach for lung cancer, and may provide some useful clues for RNAi gene therapy in solid cancers.