• Title/Summary/Keyword: human intestinal microflora

Search Result 81, Processing Time 0.028 seconds

Isoflavone Daidzein: Chemistry and Bacterial Metabolism

  • Kim, Mi-Hyang;Han, Jae-Hong;Kim, Soo-Un
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.253-261
    • /
    • 2008
  • Isoflavone daidzein is a phytoestrogen widely distributed in Leguminosae and is especially rich in the soybean. The C6-C3 (rings B and C) unit of isoflavones is derived from the phenylpropanoid pathway and the remaining C6 (ring A) unit is from the polyketide pathway. This unique carbon skeleton is the result of isomerization of the flavone catalyzed by the isoflavone synthase, a cytochrome P450 enzyme. The isoflavones daidzein and genistein are present in the plant mostly in the glucosylated forms. However, in the human intestine, the glycosidic linkage is broken, and the free form is uptaked into blood stream. The free form is further metabolized into various reduction products to end up at the equol, which is known to have the most potent estrogenic effect among the metabolites. Several human intestinal bacteria that can convert daidzein into equol have been described, and the study into the chemistry and biochemistry of the daizein reduction would be rewarding to the improvement of the human health.

Transformation of Ginsenosides to Compound K(IH-901) by Lactic Acid Bacteria of Human Intestine

  • Bae, Eun-Ah;Kim, Na-Young;Han, Myung-Joo;Choo, Min-Kyung;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • When ginsenosides Rbl, Rb2, and Rc were anaerobically incubated with commercial and human intestinal lactic acid bacteria, most commercial lactic acid bacteria did not metabolize these ginsenosides to compound K. However, lactic acid bacteria, B. minimum KK-1, Bifidobacterium cholerium KK-2, and B. cuniculi K-513, isolated from human intestinal microflora transformed these ginsensosides to compound K. When the bacterial mixtures of commercial lactic acid bacteria were incubated with these ginsenosides, these compounds were not transfformed to compound K. However, when Bzfidobacterium KK-1 and KX-2 were miked, these ginsenosides were synergistically transformed to compound K. When water extract of ginseng was incubated with these mixed bifidobacteria, compound K was potently produced. Therefore, it is suggested that, if ginseng with these mixed bifidobacteria is fermented, compound K-enforced ginseng materials could be produced that show cytotoxicity against tumor cell lines.

Degradation of Acharan Sulfate and Heparin by Bacteroides stercoris HJ-15, a Human Intestinal Bacterium

  • Kim, Dong-Hyun;Kim, Byung-Taek;Park, Sun-Yong;Kim, Na-Young;Han, Myung-Joo;Shin, Kuk-Hyun;Kim, Wan-Suk;Kim, Yeong-Sik
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.576-580
    • /
    • 1998
  • When glycosaminoglycan (GAG)-degrating enzymes were measured in normal human stool suspensions, all 5 tested different stools degraded titrable heparin and acharan sulfate. GAG-degrading bacteria were screened from the isolates of human stools. Among them, HJ-15 had the most potent activities of heparinases (GAGs-degrading enzymes). However, HJ-15 produced the enzyme even if in the media without heparin. Acharan sulfate lyase was induced by acharan sulfate and heparin. Heparinase production was also induced by these GAGs. These enzymes, acharan sulfate lyase and heparinase, were produced in exponential and stationary phase of HJ-15 growth, respectively. Optimal pHs of the acharan sulfate lyase and heparinase activities were 7.2 and 7.5 respectively. the biochemical properties of HJ-15 was similar to those of B. stercoris. However, difference from B. stercoris was utilization of raffinose. this HJ-15 also degraded chondroitin sulfates A and C.

  • PDF

Effects of Cactus Extracts on Human Intestinal Microflora (선인장 추출물이 인체 장내미생물에 미치는 영향)

  • Ra, Bo-Hyun;Lee, Woon-Jong;Cho, Yun-Won;Kim, Kwang-Yup
    • Journal of agriculture & life science
    • /
    • v.43 no.3
    • /
    • pp.45-54
    • /
    • 2009
  • This study was designed to investigate the effect of cactus (Opuntia ficus-indica var. saboten) extracts on the intestinal bacteria, antioxidative activity and angiotensin -I-converting enzyme(ACE) inhibitory activity. The antimicrobial activities were measured using the 96well-plate method and disc plate method with concentration of 20mg of cactus extract. The stem extract of cactus was inhibitory against Eubacterium limosum, Clostridium perfringens, C. butyricum, C. difficile and Staphylococcus aureus, but was not inhibitory against Bacteroides fragilis, Bifidobacterium bifidum, Lactobacillus acidophilis, Streptococcus thermophilus. The fruit extract of cactus showed no inhibition against Bacteroides fragilis, Bifidobacterium bifidum, Lactobacillus acidophilis, and Streptococcus thermophilis. Their inhibitory activities were not reduced after heat and pH treatment. Antioxidative effects of cactus extracts showed high total polyphenol and flavonoid contents and high activity against free radical DPPH. The stem and fruit extract of cactus showed strong ACE inhibitory activities of 88.8% and 69.2%, respectively. In conclusion cactus (Opuntia ficus-indica var. saboten) extract might be utilized as a functional food material to control intestinal microflora.

Effects of Potato Protein on the Growth of Clostridium perfiringens and Other Intestinal Microorganisms (감자 단백질이 Clostridium perfringens 및 주요 장내 미생물의 생육에 미치는 영향)

  • 신현경;신옥호;구영조
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.249-256
    • /
    • 1992
  • Potato juice was found out to have a strong inhibition activity on the growth of Clostridium perf;nngens during work of foodstuffs for the improvement of human intestinal microflora. The anti-bacterial activity of the precipitated protein obtained from the potato juice in 70% ammonium sulfate solution was stable at the range of pH 4 to 10, whereas it was lost by a heat treatment at $60^{\circ}C$ for 10 min. The minimal inhibitory concentration of the precipitated protein on the growth of C1. Pefingens was about 0.2 mg/ml. The potato protein also suppressed the growth of C1. butyrincm and Eubacterium iimosum, while it showed a promoting effect for the growth of Bifdobacterium bifidum, Bif: animalis, Lactobacillus plantarum and Lact. acidophitus. The potato protein was further purified by CM-Sepharose ion exchange column chromatography, Sephadex G-150 gel filtration column chromatography and SDS-polyacrylarnide gel electrophoresis. The purified protein(kCp) was proved to be a glycoprotein by PAS staining and its molecular weight was about 38.7 kd.

  • PDF

Present Status of Fermented Milk Products in Japan

  • Hosono, Akiyoshi
    • 한국유가공학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.21-39
    • /
    • 2004
  • Fermented milks have been recognized as healthy foods since ancient times, but those using intestinal bacteria such as Bifidobacterium and lactic acid bacteria (LAB) are even more valuable from the standpoint of view of maintaining health. They have also now come to be recognized as important in the field of preventive medicine. Although advances in the medical sciences in the last 50 years have significantly increased the human lift span, an unfortunate fact is that many of us are now living long enough to experience chronic disorders such as coronary heart disease, hypertension, osteoporosis, diabetes and cancer. In recent years there has been renewed interest in health promotion and disease prevention by incorporating probiotic bacteria into foods to counteract harmful bacteria in the intestinal tract. Therefore, there are now a wide variety of commercial products containing prospective probiotics that claim health-promoting effects, such reductions in large botvel carcinogens and mutagens, antitumor properties, cholesterol-lowering effects, increased lactose digestion, relief from con-stipation, stimulation of immunocomponent cells and enhancement of phagocytosis. Two well-known representative probiotic is LAB and Bifidobaclerium. Traditional probiotic dairy strains of LAB which have been designated as GRAS (Generally Recognized As Safe) bacteria have a long history of safe use and most strains are considered comestible microorganisms with no pathogenic potential. Accordingly, there is considerable interest in extending the range of foods containing probiotic organisms from dairy foods to infant formulas, baby foods, and pharmaceuticals. In addition, the ingestion of probiotics, prebiotics, and symbiotic as wll as combinations of pro- and prebiotics has recently aroused renewed interest as enhancing the beneficial relationship between the host and intestinal microflora in both healthy and diseased indivisuals. Non-communicable chronic diseases such as cancer, cerebral hemorrhage, is chemic heart disease, and diabetes mellitus has recently been recognized as adult diseases in Japan as well as other countries. and are considered to be inevitably associated with aging. These diseases occur as a result of individual life styles. The Japanes Government. Ministry of Health, Labor and Welfare has proposed substituting the term 'adult diseases' with 'lifestyle-related diseases'. It has emphasized the importance of prevention rather than treatment. since the well-known increase in the elderly population in Japan is predicted to result in a variety of socioeconomic problems. n this lecture on the Present status of fermented milk products in Japan, I will report a strategy for the development of fermented milk products in Japan from the standpoint of view of research in Japan on LAB and Bifidobacteria. They could play an important role in preserving human health by controlling intestinal microflora capable of producing toxic effects on the host.

  • PDF

Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat

  • Jeong, Sang-Hee;Kang, Dae-Jin;Lim, Myung-Woon;Kang, Chang-Soo;Sung, Ha-Jung
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.301-313
    • /
    • 2010
  • Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-$17\beta$, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA). Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented.

Safety Assessment of Potential Lactic Acid Bacteria Bifidobacterium longum SPM1205 Isolated from Healthy Koreans

  • Choi Sung Sook;Kang Byung Yong;Chung Myung Jun;Kim Soo Dong;Park So Hee;Kim Jung Soo;Kang Chin Yang;Ha Nam Joo
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.493-498
    • /
    • 2005
  • The safety assessment of Bifidobacterium longum SPM1205 isolated from healthy Koreans and this strain's inhibitory effects on fecal harmful enzymes of intestinal microflora were investigated. The overall safety of this strain was investigated during a feeding trial. Groups of SD rats were orally administered a test strain or commercial reference strain B. longum $1\times10^9\;CFU/kg$ body weight/day for four weeks. Throughout this time, their feed intake, water intake and live body weight were monitored. Fecal samples were periodically collected to test harmful enzyme activities of intestinal microflora. At the end of the four-week observation period, samples of blood, liver, spleen, kidney, and gut tissues were collected to determine for hematological parameters and histological differences. The results obtained in this experiment demonstrated that four weeks of consumption of this Bifidobacterium strain had no adverse effects on rat's general health status, blood biochemical parameters or histology. Therefore, it is likely to be safe for human use. Fecal harmful enzymes such as $\beta-glucosidase,\;\beta-glucuronidase$, tryptophanase and urease, were effectively inhibited during the administration of the B. longum SPM1205. These results suggested that this B. longum SPM 1205 could be used for humans as a probiotic strain.

Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media

  • Jeong, Yujeong;Park, Jongbin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1321-1334
    • /
    • 2020
  • Beef, pork, chicken and milk are considered representative protein sources in the human diet. Since the digestion of protein is important, the role of intestinal microflora is also important. Despite this, the pure effects of meat and milk intake on the microbiome are yet to be fully elucidated. To evaluate the effect of beef, pork, chicken and milk on intestinal microflora, we observed changes in the microbiome in response to different types of dietary animal proteins in vitro. Feces were collected from five 6-week-old pigs. The suspensions were pooled and inoculated into four different media containing beef, pork, chicken, or skim milk powder in distilled water. Changes in microbial communities were analyzed using 16S rRNA sequencing. The feces alone had the highest microbial alpha diversity. Among the treatment groups, beef showed the highest microbial diversity, followed by pork, chicken, and milk. The three dominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all the groups. The most abundant genera in beef, pork, and chicken were Rummeliibacillus, Clostridium, and Phascolarctobacterium, whereas milk was enriched with Streptococcus, Lactobacillus, and Enterococcus. Aerobic bacteria decreased while anaerobic and facultative anaerobic bacteria increased in protein-rich nutrients. Functional gene groups were found to be over-represented in protein-rich nutrients. Our results provide baseline information for understanding the roles of dietary animal proteins in reshaping the gut microbiome. Furthermore, growth-promotion by specific species/genus may be used as a cultivation tool for uncultured gut microorganisms.

Effect of Kimchi Intake on the Composition of Human Large Intestinal Bacteria (김치의 섭취가 인체의 장내 미생물에 미치는 영향)

  • Lee, Ki-Eun;Choi, Un-Ho;Ji, Geun-Eog
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.981-986
    • /
    • 1996
  • We have conducted this study to examine effect of kimchi intake on the composition of human large intestinal bacteria. Two hundred grams of kimchi were administered to 10 healthy young volunteers (20-30 years old) every day for 2 weeks, followed by 2 weeks of non-intake period. The non-intake-intake cycle was repeated for 10 weeks. Except antibiotics and materials which contain live bacteria, subjects were allowed to eat ad libitum. The composition of intestinal microflora (Bacteroides, Bifidobacterium, Escherichia coli, Streptococcus, Lactobacillus, Leuconostoc, Staphylococcus, Clostridium perfringens) was examined a1 the last day of each period. $\beta-Glucosidase$ and $\beta-glucuronidase$ activities, pH and moisture content of the fecal samples were also measured. During the administration of kimchi, the cell counts of Lactobacillus and Leuconostoc increased significantly (p<0.05), whereas those of other bacteria did not change significantly. The enzyme level of $\beta-glucosidase$ and $\beta-glucuronidase$ decreased during kimchi intake (p<0.05). Results indicate that a portion of lactic acid bacteria present in kimchi can pass human stomach and reside in the large intestinal tract.

  • PDF