• Title/Summary/Keyword: human errors

Search Result 725, Processing Time 0.029 seconds

Empirical study on BlenderBot 2.0's errors analysis in terms of model, data and dialogue (모델, 데이터, 대화 관점에서의 BlendorBot 2.0 오류 분석 연구)

  • Lee, Jungseob;Son, Suhyune;Shim, Midan;Kim, Yujin;Park, Chanjun;So, Aram;Park, Jeongbae;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.93-106
    • /
    • 2021
  • Blenderbot 2.0 is a dialogue model representing open domain chatbots by reflecting real-time information and remembering user information for a long time through an internet search module and multi-session. Nevertheless, the model still has many improvements. Therefore, this paper analyzes the limitations and errors of BlenderBot 2.0 from three perspectives: model, data, and dialogue. From the data point of view, we point out errors that the guidelines provided to workers during the crowdsourcing process were not clear, and the process of refining hate speech in the collected data and verifying the accuracy of internet-based information was lacking. Finally, from the viewpoint of dialogue, nine types of problems found during conversation and their causes are thoroughly analyzed. Furthermore, practical improvement methods are proposed for each point of view, and we discuss several potential future research directions.

A System for Measuring 3D Human Bodies Using the Multiple 2D Images (다중 2D 영상을 이용한 3D 인체 계측 시스템)

  • 김창우;최창석;김효숙;강인애;전준현
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.1-12
    • /
    • 2003
  • This paper proposes a system for measuring the 3D human bodies using the multiple 2D images. The system establishes the multiple image input circumstance from the digital camera for image measurement. The algorithm considering perspective projection leads us to estimate the 3D human bodies from the multiple 2D images such as frontal. side and rear views. The results of the image measurement is compared those of the direct measurement and the 3D scanner for the total 40 items (12 heights, 15 widths and 13 depths). Three persons measure the 40 items using the three measurement methods. In comparison of the results obtained among the measurement methods and the persons, the results between the image measurement and the 3D scanner are very similar. However, the errors for the direct measurement are relatively larger than those between the image measurement and the 3D scanner. For example, the maximum errors between the image measurement and the 3D scanner are 0.41cm in height, 0.39cm in width and 0.95cm in depth. The errors are acceptable in body measurement. Performance of the image measurement is superior to the direct. because the algorithm estimates the 3D positions using the perspective projection. In above comparison, the image measurement is expected as a new method for measuring the 3D body, since it has the various advantages of the direct measurement and 3D scanner in performance for measurement as well as in the devices, cost, Portability and man power.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

A study of the threats towards the flight crew (민간항공사의 운항승무원에 영향을 주는 위협관리에 관한 연구)

  • Choi, Jin-Kook;Kim, Chil-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • The flight deck crew must manage complexity during daily flight operations. The Airline may obtain data regarding threats and errors through LOSA(Line Operations Safety Audits) on normal flights as predictive safety tool in Safety Management System of the Airline to actively improve the systems such as SOP(Standard Operation Procedure), training, evaluation and the TEM(Threat and Error Management) for the flight deck crew. The flight deck crew make errors when they fail managing threats. The crew mismanage around ten percent of threats and commit errors. The major mismanaged threats are aircraft malfunction, ATC(Air Traffic Communication), and wether threats. The effective countermeasures of TEM for manageing threats are leadership, workload management, monitor & cross check, Vigilance, communication environment and cooperation of the crew. It is important that organizations must monitor for the hazards of threats and improve system for the safer TEM environments.

Alignment error analysis of KAL KE007 inertial navigation system

  • Park, Chan-Ung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.564-566
    • /
    • 1992
  • It is tragic that the Korean Airline Boing 747, KE007, wandered hundreds of miles off course into Soviet airspace and was shot down on September 1, 1983. The exact cuases are not known yet. Thus, speculation centers on human error or faulty procedure of three Litton LTN-72R inertial navigation systems(INS) with which the KAL KE007 was equipped. The inertial platform must be aligned before the INS can be used as a precision inertial navigation system. This analysis checks a possibility that the navigation errors are caused by a wrong INS alignment procedure assuming it is done at Anchorage. Possible causes for the navigational position error, such as alignment errors and gyro drift errors, are analyzed through inertial navigation system error prapagation simulations. A set of misalignment angle is estimated to determine what degree of alignment errors are required to cause the navigation error assuming that the accident is caused by the INS misalignment.

  • PDF

A study on the characteristics on the error of the flight crew (운항승무원 실수 특성에 관한 연구 : LOSA를 중심으로)

  • Choi, Jin-Kook;Kim, Chil-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.62-67
    • /
    • 2009
  • LOSA is a flight safety program that analyses human errors in normal operations. Trained pilot observers monitor the normal flights at the observer seat. LOSA is a proactive non jeopardy data collection tool using threat and error management(TEM) as a framework. With the analysis of crew behaviors through LOSA with The LOSA collaborative(TLC), the airlines can identify the behaviors of the crew during normal operations. The major objective of LOSA is to measure how the crew manage threats, errors and undesired aircraft deviations in the cockpit on day to day operations. The airlines are able to set up effective TEM training with practical six generation Crew recourse management(CRM) with data of error from LOSA instead of theoretical CRM courses. The Airlines can use TEM as an integral part of a Safety Management System(SMS) and uses monitoring and cross-checking skills in the flight operations to manage threats and errors effectively when we know the errors we make in the cockpit on daily operation. The result of LOSA indicates that the error detection rate should be enhanced since around the half of the errors went undetected. The areas which should be focused for enhancing the error detection are monitor, cross-check, the management of workload, automation and taxiway/ runway to manage errors effectively.

  • PDF