• Title/Summary/Keyword: human error model

Search Result 363, Processing Time 0.027 seconds

An Analysis of Human Factor and Error for Human Error of the Semiconductor Industry (반도체 산업에서의 인적오류에 대한 인적요인과 과오에 대한 분석)

  • Yun, Yong-Gu;Park, Beom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.04a
    • /
    • pp.113-123
    • /
    • 2007
  • Through so that accident of semiconductor industry deduces unsafe factor of the person center on unsafe behaviour that incident history and questionnaire and I made starting point that extract very important factor. It served as a momentum that make up base that analyzes factors that happen based on factor that extract factor cause classification for the first factor, the second factor and the third factor and presents model of human error. Factor for whole defines factor component for human factor and to cause analysis 1 stage in human factor and step that wish to do access of problem and it do analysis cause of data of 1 step. Also, see significant difference that analyzes interrelation between leading persons about human mistake in semiconductor industry and connect interrelation of mistake by this. Continuously, dictionary road map to human error theoretical background to basis traditional accidental cause model and modern accident cause model and leading persons. I wish to present model and new model in semiconductor industry by backbone that leading persons of existing scholars who present model of existent human error deduce relation. Finally, I wish to deduce backbone of model of pre-suppression about accident leading person of the person center.

  • PDF

Human Error Analysis Technique and Its Application to Marine Accidents

  • Na, Seong;Kim, Hong-Tae;Kim, Hye-Jin;Ha, Wook-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The management of safety at sea is based on a set of internationally accepted regulations and codes, governing or guiding the design and operation of ships. The regulations most directly concerned with human safety and protection of the environment are, in general, agreed internationally through the International Maritime Organization(IMO). IMO has continuously dealt with safety problems and, recognized that the human element is a key factor in both safety and pollution prevention issues(IMO, 2010). This paper proposes a human error analysis methodology which is based on the human error taxonomy and theories (SHELL model, GEMS model and etc.) that were discussed in the IMO guidelines for the investigation of human factors in marine casualties and incidents. In this paper, a cognitive process model, a human error analysis technique and a marine accident causal chains focused on human factors are discussed, and towing vessel collision accidents are analyzed as a case study in order to examine the applicability of the human error analysis technique to marine accidents. Also human errors related to those towing vessel collision accidents and their underlying factors are discussed in detail.

A Validity Verification of Human Error Probability using a Fuzzy Model (퍼지모델을 이용한 인적오류확률의 타당성 검증)

  • Jang, Tong-Il;Lee, Yong-Hee;Lim, Hyeon-Kyo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.137-142
    • /
    • 2006
  • Quantification of error possibility, in an HRA process, should be performed so that the result of the qualitative analysis can be utilized in other areas in conjunction with overall safety estimation results. And also, the quantification is an essential process to analyze the error possibility in detail and to obtain countermeasures for the errors through screening procedures. In previous studies for the quantification of error possibility, nominal values were assigned by the experts' judgements and utilized as corresponding probabilities. The values assigned by experts' experiences and judgements, however, require verifications on their reliability. In this study, the validity of new error possibility values in new MCR design was verified by using the Onisawa's model which utilizes fuzzy linguistic values to estimate human error probabilities. With the model of error probabilities are represented as analyst's estimations and natural language expression instead of numerical values. As results, the experts' estimation values about error probabilities are well agreed to the existing error probability estimation model. Thus, it was concluded that the occurrence probabilities of errors derived from the human error analysis process can be assessed by nominal values suggested in the previous studies. It is also expected that our analysis method can supplement the conventional HRA method because the nominal values are based on the consideration of various influencing factors such as PSFs.

A Case Study of Marine Accident Investigation and Analysis with Focus on Human Error (해양사고조사를 위한 인적 오류 분석사례)

  • Kim, Hong-Tae;Na, Seong;Ha, Wook-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.137-150
    • /
    • 2011
  • Nationally and internationally reported statistics on marine accidents show that 80% or more of all marine accidents are caused fully or in part by human error. According to the statistics of marine accident causes from Korean Maritime Safety Tribunal(KMST), operating errors are implicated in 78.7% of all marine accidents that occurred from 2002 to 2006. In the case of the collision accidents, about 95% of all collision accidents are caused by operating errors, and those human error related collision accidents are mostly caused by failure of maintaining proper lookout and breach of the regulations for preventing collision. One way of reducing the probability of occurrence of the human error related marine accidents effectively is by investigating and understanding the role of the human elements in accident causation. In this paper, causal factors/root causes classification systems for marine accident investigation were reviewed and some typical human error analysis methods used in shipping industry were described in detail. This paper also proposed a human error analysis method that contains a cognitive process model, a human error analysis technique(Maritime HFACS) and a marine accident causal chains, and then its application to the actual marine accident was provided as a case study in order to demonstrate the framework of the method.

A Study on the Detailed Classification and Empirical Analysis of Human Error (인적오류의 세부적 분류와 실증분석에 관한 연구)

  • Kim, Y.K.;Kim, C.Y.;Choi, Y.C.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.10 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • In aviation, it is important to analyse and classify human error in detail. Because human error has been implicated in 70 or 80% of aviation accidents in literature review. But, there is little detailed classification and research of human error. In this study, Objectives are to establish human error model by classifying types of human error in detail and also to analyse human factors by using the established model. Analysis of the data uses Korea Aviation Incidents Reporting System(GYRO). The resulting from actual analysis, there is a some difference between flight steps for human error occurrence and types of human error are different according to the aviation personnel(pilot, ATC controller).

  • PDF

- The Accident Analyze of a Pointed-End Equipment for Human Error - (Human Error에 의한 첨단장비의 사고 분석 연구)

  • Yoon Yong Gu;Park Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.39-46
    • /
    • 2004
  • The Study lay Emphasised on to Investigate Human Related Causes of a Pointed End Equipment Accident and the Basic data for Analyzing Human-Error Prevention Program. Peter Son's Model of Human-Error Accident Causation and Cooper's Model of Safety Culture Were Applied to Analyze the Severe Cause of a Pointed End Equipment for Last 5 Years. Through to Analyzing the Cause of Equipment Accident of Human-Error, Expert's Opinion and Experience Theory Method was Reflected. The Analyses Showed What the Immature and Inexperient Error Were Major Causes of a Pointed and Equipment Accident. The Cause of Human-Error was Found with Respect to Human, Tasks, Acknowledge, Organization.

The Accident Analyze study of a Pointed- End Equipment for Human Error (Human Error에 의한 첨단장비의 사고 분석연구)

  • Yoon Yong Gu;Park Peom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.311-318
    • /
    • 2004
  • The Study lay Emphasised on to Investigate Human Related Causes of a Pointed End Equipment Accident and the Basic data for Analyzing Human-Error Prevention Program. Peter Son's Model of Human-Error Accident Causation and Cooper's Model of Safety Culture Were Applied to Analyze the Severe Cause of a Pointed End Equipment for Last 5 Years. Through to Analyzing the Cause of Equipment Accident of Human-Error, Expert's Opinion and Experience theory Method was Reflected. The Analyses Showed What the Immature and Inexperient Error Were Major Causes of a Pointed and Equipment Accident The Cause of Human-Error was Found with Respect to Human, Tasks, Acknowledge, Organization.

  • PDF

Human Error Probability Assessment During Maintenance Activities of Marine Systems

  • Islam, Rabiul;Khan, Faisal;Abbassi, Rouzbeh;Garaniya, Vikram
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.42-52
    • /
    • 2018
  • Background: Maintenance operations on-board ships are highly demanding. Maintenance operations are intensive activities requiring high man-machine interactions in challenging and evolving conditions. The evolving conditions are weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress. For example, extreme weather condition affects seafarers' performance, increasing the chances of error, and, consequently, can cause injuries or fatalities to personnel. An effective human error probability model is required to better manage maintenance on-board ships. The developed model would assist in developing and maintaining effective risk management protocols. Thus, the objective of this study is to develop a human error probability model considering various internal and external factors affecting seafarers' performance. Methods: The human error probability model is developed using probability theory applied to Bayesian network. The model is tested using the data received through the developed questionnaire survey of >200 experienced seafarers with >5 years of experience. The model developed in this study is used to find out the reliability of human performance on particular maintenance activities. Results: The developed methodology is tested on the maintenance of marine engine's cooling water pump for engine department and anchor windlass for deck department. In the considered case studies, human error probabilities are estimated in various scenarios and the results are compared between the scenarios and the different seafarer categories. The results of the case studies for both departments are also compared. Conclusion: The developed model is effective in assessing human error probabilities. These probabilities would get dynamically updated as and when new information is available on changes in either internal (i.e., training, experience, and fatigue) or external (i.e., environmental and operational conditions such as weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress) factors.

A Proposition of Accident Causation Model for the Analysis of Human Error Accidents in Railway Operations (철도 분야의 인적 오류 사고 분석을 위한 사고발생 모형의 제안)

  • Kim, Dong-San;Baek, Dong-Hyun;Yoon, Wan-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.241-248
    • /
    • 2010
  • In accident analysis, it is essential to understand the causal pathways of the accident. Although numerous accident models have been developed to help analysts understand how and why an accident occurs, most of them do not include all elements related to the accident in various fields. Thus analysis of human error accidents in railway operations using these existing models may be possible, but inevitably incomplete. For a more thorough analysis of the accidents in railway operations, a more exhaustive model of accident causation is needed. This paper briefly reviews four recent accident causation models, and proposes a new model that overcomes the limitations of the existing models for the analysis of human error accidents in railway operations. In addition, the usefulness and comprehensiveness of the proposed model is briefly tested by explaining 12 railway accident cases with the model. The proposed accident causation model is expected to improve understanding of how and why an accident/incident occurs, and help prevent analysts from missing any important aspect of human error accidents in railway operations

Design of Human-Error Detect Filter (휴먼에러의 검출 필터 설계)

  • Kim, Hwan-Seong;Kim, Seung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.121-123
    • /
    • 2009
  • In previous research results, human error can be detected by using observation theory which assumed with step human failures, thus the detector has a limit to detect the human failures. In this paper, we propose a human error detect filter for given human failures. Various kind of human failures can be modeled, and from these models, an argumented human failure model can constructed. By using the argumented human failure model, the human error detect filter can be designed.

  • PDF