• 제목/요약/키워드: human embryonic cells

검색결과 386건 처리시간 0.434초

줄기세포를 이용한 세포치료법 (The Use of Stem Cells as Medical Therapy)

  • 손은화;표석능
    • KSBB Journal
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2005
  • Recently, there has been extremely active in the research of stem cell biology. Stem cells have excellent potential for being the ultimate source of transplantable cells for many different tissues. Researchers hope to use stem cells to repair or replace diseased or damaged organs, leading to new treatments for human disorders that are currently incurable, including diabetes, spinal cord injury and brain diseases. There are primary sources of stem cells like embryonic stem cells and adult stem cells. Stem cells from embryos were known to give rise to every type of cell. However, embryonic stem cells still have a lot of disadvantages. First, transplanted cells sometimes grow into tumors. Second, the human embryonic stem cells that are available for research would be rejected by a patient's immune system. Tissue-matched transplants could be made by either creating a bank of stem cells from more human embryos, or by cloning a patient's DNA into existing stem cells to customize them. However, this is laborious and ethically contentious. These problems could be overcome by using adult stem cells, taken from a patient, that are treated to remove problems and then put back. Nevertheless, some researchers do not convince that adult stem cells could, like embryonic ones, make every tissue type. Human stem cell research holds enormous potential for contributing to our understanding of fundamental human biology. In this review, we discuss the recent progress in stem cell research and the future therapeutic applications.

인간태아 섬유아세포와 생쥐배아 섬유아세포를 기저세포로 활용한 인간 배아줄기세포의 확립 (Establishment of Human Embryonic Stem Cells using Mouse Embryonic Fibroblasts and Human Fetal Fibroblasts as Feeder Cells)

  • 조혜원;고경래;김미경;이재익;신수일;이동형;김기형;이규섭
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제32권2호
    • /
    • pp.133-147
    • /
    • 2005
  • Objectives: This study was carried out to establish human embryonic stem cells derived from frozen-thawed embryos using mouse embryonic fibroblasts (mEFs), human fetal skin and muscle fibroblasts as feeder cells, and to identify the characteristic of embryonic stem cells. Methods: When primary mEFs, human fetal skin and muscle fibroblasts were prepared, passaging on 4 days from replating could have effective trypsinization and clear feeder layers. Eight of 23 frozenthawed 4~8 cell stage embryos donated from consenting couples developed to blastocysts. Inner cell mass (ICM) was isolated by immunosurgery. ICM was co-cultured on mEFs, human fetal skin or muscle fibroblasts. The ICM colonies grown on mEFs, human fetal skin or muscle fibroblasts were tested the expression of stage specific embryonic antigen-3, -4 (SSEA-3, -4), octamer binding transcription factor-4 mRNA (Oct-4) and alkaline phosphatase surface marker. Results: We obtained 1 ICM colony from 2 ICM co-cultured on mEFs as feeder cells and did not obtain any ICM colony from 6 ICM clumps co-cultured on human fetal skin or muscle fibroblasts. The colony formed on mEFs could be passaged 30 times every 5 days with sustaining undifferentiated colony appearance. When the colonies cultured on mEFs were grown on human fetal skin or muscle fibroblasts, the colonies could be passaged 15 times every 9 days with sustaining undifferentiated colony appearance. The colonies grown on mEFs and human fetal fibroblasts expressed SSEA-4 and alkaline phosphatase surface markers and positive for the expression of Oct-4 by reverse transcription-polymerase chain reaction (RT-PCR). The produced embryoid body differentiated spontaneously to neural progenitorlike cells, neuron-like cells and beating cardiomyocyte-like cells, and frozen-thawed embryonic stem cells displayed normal 46,XX karyotype. Conclusions: The human embryonic stem cells can be established by using mEFs and human fetal fibroblasts produced in laboratory as feeder cells.

영국의 배아관리체계와 공공정책의 선택 (Human Embryo Management System and Public Policy Options in the United Kingdom)

  • 황만성;한동운
    • 보건행정학회지
    • /
    • 제14권3호
    • /
    • pp.97-121
    • /
    • 2004
  • Recently, human embryonic stem cell research raises exciting public expectation on medical possibilities as well as ethical debate. Embryo management has become an integral part of the management of infertility treatment, researches on embryo and human embryonic stem cells and so on. Britain has permitted the research on stem cells derived from human embryo which made the first nation to allow the cloning of human embryo for the stem cell research. However, new technologies such as the assisted reproductive technologies and human embryonic stem cell research continue to pose an increasing source of ethical dilemmas for physician, scientists, legislators, religious authorities and the general publics to deal with. None the less, the United Kingdom has adopted the most liberal policies regarding human embryo and human embryonic stem cell research. The implication of the British embryo management system are as follows: 1) the development of reproductive technologies and new stem cell research technologies continue to pose legal and ethical debates, since those involve several parties; 2) the UK has taken the legal and institutional approaches to cope with those serious issues; 3) the UK adopted most liberal policies regarding embryonic and human embryonic stem cell researches; 4) the British HFE Act is consistent with the existing Acts related to human embryo management and researches; 5) through amending the HFE Act to accomodate the changes of technologies, the UK try to minimize the legal and ethical burden on undertaking research regarding embryo. The debates about the researches on human embryo and human embryonic stem cells is likely to continue in the Korean society. Because of the controversy and competing ethical values, as well as the evolving technologies, so far no consensus exists in our society. It suggest that it is premature to bring closure by ruling out any particular approaches. Thus our society needs to make an efforts to find a basis which could resolve the societal controversies through enriching the societal conversation about the profound ethical issues regarding embryo management.

Assessment of Developmental Toxicants using Human Embryonic Stem Cells

  • Hong, Eui-Ju;Jeung, Eui-Bae
    • Toxicological Research
    • /
    • 제29권4호
    • /
    • pp.221-227
    • /
    • 2013
  • Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.

SIRT1 Knockdown Enhances the Differentiation of Human Embryonic Stem Cells into Pancreatic β Cells

  • Seo, Nan-Hee;Song, Hwa-Ryung;Han, Myung-Kwan
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.391-399
    • /
    • 2019
  • Nicotinamide is used to maturate pancreatic progenitors from embryonic stem cells (ESCs) into insulin-producing cells (IPCs). It has been known that nicotinamide inhibits the enzymatic activity of SIRT1, an NAD+-dependent deacetylase. Here we show that SIRT1 knockdown enhances the differentiation of human ESCs into IPCs. SIRT1 knockdown enhances the clustering size of IPCs and the expression of pancreatic genes including c-peptide, pancreas/duodenum homeobox protein 1 (PDX1), insulin, somatostatin, glucagon and Nkx6.1 in human ESC-derived IPCs. In addition, We found that IPCs differentiated from SIRT1 knockdowned human ESCs have more zinc compared to those from control human ESCs. Our data suggest that SIRT1 negatively regulates the differentiation of β cells from human ESCs.

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: II. Genetically Modified Human Embryonic Stem Cells Treated with RA/AA or b-FGF

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.75-75
    • /
    • 2003
  • Since the establishment of embryonic stem cell, pluripotency of the cells was known to allow differentiation of the cells into various cell types consisting whole body. Several protocols have been developed to induce expression of specific genes.. However, no precise protocol that will generate a single type of the cells from stem cells has been reported. In order to produce cells suitable for transplantion into brain of PD animal model, which arouse due to a progressive degeneration of dopaminergic neurons in midbrain, human embryonic stem cell (hESC, MB03) was transfected with cDNAs cording for tyrosine hydroxylase (TH). Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by the two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA/ascorbic acid (AA), embryoid bodies (EB, for 4days) derived from hES cells were exposed to RA (10$^{-6}$ M)/AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. By indirect immunocytochemical studies, proportion of cells expressing NF200 increased rapidly from 20% at 7 days to 70 % at 28 days in RA/AA-treated group, while those cells expressing NF160 decreased from 80% at 7 days to 10% at 28 days upon differentiation in N2 medium. However, in differentiation by RA/AA treatment system, there was a significant increase in proportion of neuron maturity (73%) at day 14 after N2 medium. TH#2/MB03 cells expressing TH are >90% when matured at the absence of either bDNF or TGF-$\alpha$. These results suggested that TH#2/MB03 cells could be differentiated in vitro into mature neurons by RA/AA.

  • PDF

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: I. Effect of Neurotrophic Factors on Neural Progenitor Cells

  • Kim Eun-Yeong;Jo Hyeon-Jeong;Choe Gyeong-Hui;An So-Yeon;Jeong Gil-Saeng;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.18-18
    • /
    • 2002
  • This study was to investigate the effect of neurotrophic factors on neural cell differentiation in vitro derived from human embryonic stem (hES, MB03) cells. For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7 - 10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron cells, neural progenitor cells were cultured in ⅰ) N2 medium (without bFGF), ⅱ) N2 supplemented with brain derived neurotrophic factor (BDNF, 5ng/㎖) or ⅲ) N2 supplemented with platelet derived growth factor-bb (PDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Establishment of Human-Mouse Chimeric Animal by Injecting Human Embryonic Stem Cells into Mouse Blastocoele Cavity

  • 윤지연;이영재;김은영;이훈택;정길생;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.77-77
    • /
    • 2003
  • Chimeric animals are referred to as an organism composed of tissues derived from more than one species. In order to examine if a pluripotency of embryonic stem cells can cross the limitation of a species, we tried to establish human-mouse chimeric animals. Human embryonic stem cells were genetically modified to express eGFP using eukaryonic expression vector pcDNA 3.1 (In Vitrogene) for an easy identification. After selection with neomycin, approximately 15 cells were implanted into mouse blastocoele cavity. Ten chimeric blastocysts were transferred to one of the uterine horn of 2.5 days pesudopregnent ICR female. Out of 272 blastocysts transferred to pseudopregnant recipients 20 live newborn were obtained after 20 days. When newborn were obtained, pups were quickly removed immersed into 4% PFA. By histological examination using fluorescent microscope, green fluorescence was observed from the liver, heart, and spleen in newborn mice. Three weeks after born, presence of eGFP sequence within mouse genome (tail and kidney) was reconfirmed by PCR. eGFP sequence was amplified from the progenies of the animal suggesting a genetic transmission of the transgene. These chimeric mice having human cells at the beginning of development, are expected to recognize human cells as “self”, therefore, human cells or tissues will be able to escape the immunological surveillance of the host if grafted into the animal. These animals will serve as a good model system for studying the graft rejection in tissue transplantation and the potential of the cells to work well in many human disease.

  • PDF