Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.6.056

Emerging role of mitophagy in human diseases and physiology  

Um, Jee-Hyun (Department of Biochemistry, College of Medicine, Dong-A University)
Yun, Jeanho (Department of Biochemistry, College of Medicine, Dong-A University)
Publication Information
BMB Reports / v.50, no.6, 2017 , pp. 299-307 More about this Journal
Abstract
Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology.
Keywords
Mitophagy; human diseases; human physiology; Mitochondria dysfunctions; mitophagy activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dorn GW 2nd (2010) Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3, 374-383   DOI
2 Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13, 619-624   DOI
3 Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459   DOI
4 Kubli DA, Zhang X, Lee Y et al (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288, 915-926   DOI
5 Siddall HK, Yellon DM, Ong SB et al (2013) Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. PLoS One 8, e62400   DOI
6 Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P and Gottlieb RA (2011) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6, e20975   DOI
7 Takamura A, Komatsu M, Hara T et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25, 795-800   DOI
8 Glick D, Zhang W, Beaton M et al (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32, 2570-2584   DOI
9 Williams JA and Ding WX (2015) A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules 5, 2619-2642   DOI
10 Sun N, Yun J, Liu J et al (2015) Measuring In Vivo Mitophagy. Mol Cell 60, 685-696   DOI
11 Rana A, Rera M and Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 110, 8638-8643   DOI
12 Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161   DOI
13 Narendra D, Tanaka A, Suen DF and Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183, 795-803   DOI
14 Zhu J, Wang KZ and Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9, 1663-1676   DOI
15 Lemasters JJ (2014) Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2, 749-754   DOI
16 Lu H, Li G, Liu L, Feng L, Wang X and Jin H (2013) Regulation and function of mitophagy in development and cancer. Autophagy 9, 1720-1736   DOI
17 Eiyama A and Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33, 95-101   DOI
18 Palikaras K, Lionaki E and Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525-528   DOI
19 Shin JH, Ko HS, Kang H et al (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702   DOI
20 Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235   DOI
21 Allen GF, Toth R, James J and Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14, 1127-1135   DOI
22 Gomes LC and Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 1777, 860-866   DOI
23 Al Rawi S, Louvet-Vallee S, Djeddi A et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144-1147   DOI
24 Sato M and Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141-1144   DOI
25 Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22, 879-888   DOI
26 Kanki T, Furukawa K and Yamashita S (2015) Mitophagy in yeast: Molecular mechanisms and physiological role. Biochim Biophys Acta 1853, 2756-2765   DOI
27 Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314   DOI
28 Chu CT, Ji J, Dagda RK et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15, 1197-1205   DOI
29 Kubli DA, Cortez MQ, Moyzis AG, Najor RH, Lee Y and Gustafsson AB (2015) PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS One 10, e0130707   DOI
30 Sentelle RD, Senkal CE, Jiang W et al (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8, 831-838   DOI
31 Ren M, Phoon CK and Schlame M (2014) Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55, 1-16
32 Kanki T, Wang K and Klionsky DJ (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6, 278-280   DOI
33 Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191, 1367-1380   DOI
34 Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676   DOI
35 Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23, 1085-1094   DOI
36 Kita T, Nishida H, Shibata H, Niimi S, Higuti T and Arakaki N (2009) Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation. J Biochem 146, 787-796   DOI
37 Sin J, Andres AM, Taylor DJ et al (2016) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy 12, 369-380   DOI
38 Folmes CD, Nelson TJ, Martinez-Fernandez A et al (2011) Somatic oxidative bioenergetics transitions into pluripotency- dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14, 264-271   DOI
39 Prigione A, Fauler B, Lurz R, Lehrach H and Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721-733   DOI
40 Varum S, Rodrigues AS, Moura MB et al (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6, e20914   DOI
41 Kim MJ, Bae SH, Ryu JC et al (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12, 1272-1291   DOI
42 Yamashita SI, Jin X, Furukawa K et al (2016) Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 215, 649-665   DOI
43 Zeuschner D, Mildner K, Zaehres H and Scholer HR (2010) Induced pluripotent stem cells at nanoscale. Stem Cells Dev 19, 615-620   DOI
44 Kubli DA and Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111, 1208-1221   DOI
45 Djavaheri-Mergny M, Maiuri MC and Kroemer G (2010) Cross talk between apoptosis and autophagy by caspasemediated cleavage of Beclin 1. Oncogene 29, 1717-1719   DOI
46 Pagliarini V, Wirawan E, Romagnoli A et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19, 1495-1504   DOI
47 Kim MJ, Yoon JH and Ryu JH (2016) Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Rep 49, 529-535   DOI
48 Kang R, Zeng L, Xie Y et al (2016) A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy 12, 2374-2385   DOI
49 Cha MY, Kim DK and Mook-Jung I (2015) The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 47, e150   DOI
50 Nah J, Yuan J and Jung YK (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38, 381-389   DOI
51 Hsieh CH, Shaltouki A, Gonzalez AE et al (2016) Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell Stem Cell 19, 709-724   DOI
52 Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160   DOI
53 Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608   DOI
54 Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB and Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100, 4078-4083   DOI
55 Ashrafi G, Schlehe JS, LaVoie MJ and Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206, 655-670   DOI
56 Rizzo F, Ronchi D, Salani S et al (2016) Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Hum Mol Genet 25, 4266-4281   DOI
57 Wang X, Winter D, Ashrafi G et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893-906   DOI
58 Court FA and Coleman MP (2012) Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 35, 364-372   DOI
59 Flatters SJ and Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122, 245-257   DOI
60 Pareyson D, Piscosquito G, Moroni I, Salsano E and Zeviani M (2013) Peripheral neuropathy in mitochondrial disorders. Lancet Neurol 12, 1011-1024   DOI
61 Chourasia AH, Boland ML and Macleod KF (2015) Mitophagy and cancer. Cancer Metab 3, 4   DOI
62 Cesari R, Martin ES, Calin GA et al (2003) Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 100, 5956-5961   DOI
63 Veeriah S, Taylor BS, Meng S et al (2010) Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42, 77-82   DOI
64 Fujiwara M, Marusawa H, Wang HQ et al (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27, 6002-6011   DOI
65 Letessier A, Garrido-Urbani S, Ginestier C et al (2007) Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene 26, 298-307   DOI
66 Baker MJ, Palmer CS and Stojanovski D (2014) Mitochondrial protein quality control in health and disease. Br J Pharmacol 171, 1870-1889   DOI
67 Taylor RW and Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6, 389-402   DOI
68 Kang D and Hamasaki N (2005) Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 12, 429-441   DOI
69 Sun N, Youle RJ and Finkel T (2016) The Mitochondrial Basis of Aging. Mol Cell 61, 654-666   DOI
70 Burte F, Carelli V, Chinnery PF and Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11, 11-24
71 Ashrafi G and Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20, 31-42   DOI
72 Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH and Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61, 6669-6673
73 Poulogiannis G, McIntyre RE, Dimitriadi M et al (2010) PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 107, 15145-15150   DOI
74 Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166   DOI
75 Zhang C, Lin M, Wu R et al (2011) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108, 16259-16264   DOI
76 de Reynies A, Assie G, Rickman DS et al (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27, 1108-1115   DOI
77 Fragoso MC, Almeida MQ, Mazzuco TL et al (2012) Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients. Eur J Endocrinol 166, 61-67   DOI
78 Calvisi DF, Ladu S, Gorden A et al (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117, 2713-2722   DOI
79 Chourasia AH, Tracy K, Frankenberger C et al (2015) Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 16, 1145-1163   DOI
80 Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283, 10892-10903   DOI
81 Billia F, Hauck L, Konecny F, Rao V, Shen J and Mak TW (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 108, 9572-9577   DOI