• Title/Summary/Keyword: human colorectal cancer cell

Search Result 200, Processing Time 0.043 seconds

Antioxidant Activities of Dianthus chinensis L. Extract and Its Inhibitory Activities against Nitric Oxide Production and Cancer Cell Growth and Adhesion (패랭이꽃 추출물의 항산화, Nitric Oxide 생성저해, 암세포 성장 및 부착 억제 활성)

  • Lee, Jungjae;Seo, Younggeo;Lee, Junho;Ju, Jihyeung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The aim of the study was to investigate the antioxidant content and activities of ethanol extract of the edible flower Dianthus chinensis L. (DCE) as well as its inhibitory activities against nitric oxide (NO) production in macrophages and growth and adhesion of human cancer cells. The total polyphenol, flavonoid, and carotenoid levels of DCE were 19.0 mg gallic acid equivalent/g, 65.7 mg quercetin equivalent/g, and $95.0{\mu}g/g$, respectively. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power of DCE at a concentration of $1,000{\mu}g/mL$ were 44% and 51%, respectively. In lipopolysaccharide-treated RAW 264.7 macrophages, treatment with DCE at concentrations of 500 and $1,000{\mu}g/mL$ resulted in significantly reduced NO levels (to 7~23% of the control). In H1299 human lung carcinoma cells and HCT116 human colorectal carcinoma cells, treatment with DCE at concentrations of 250, 500, and $1,000{\mu}g/mL$ resulted in dose-dependent growth inhibition. DCE was also effective in inhibiting adhesion of both H1299 cells (to 55% of the control at concentration of $1,000{\mu}g/mL$) and HCT116 (to 26~40% of the control at concentrations of 250, 500, and $1,000{\mu}g/mL$). These results suggest that DCE exerts antioxidant, anti-inflammatory, and anti-cancer activities in vitro.

Anticancer and Antiviral Activity of Chlorine Dioxide by Its Induction of the Reactive Oxygen Species (이산화염소의 활성산소 생성 유도에 의한 항암 및 항바이러스 활성)

  • Kim, Yonggyun;Kumar, Sunil;Cheon, Wonsu;Eo, Hyunji;Kwon, Hyeok;Jeon, Yongho;Jung, Jinboo;Kim, Wook
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Chlorine dioxide has been used for a disinfectant by exhibiting antimicrobial activity and is also potent to kill insect pests infesting stored grains. This study aimed to extend the usefulness of chlorine dioxide with respect to anticancer and antiviral activities. Cytotoxicity of chlorine dioxide was assessed against five different human cancer cell lines. Chlorine dioxide exhibited significant cytotoxicity against two breast cancer cell lines (MCF-7, MDA-MB-231) and three colorectal cancer cell lines (LoVo, HCT-116, SW-480). This cytotoxicity appeared to be associated with the capacity of chlorine dioxide to induce the production of reactive oxygen species (ROS). Compared to control insect cell lines, the cancer cell lines possessed much higher levels of ROS. On the other hand, a treatment of an antioxidant, vitamin E, significantly reduced the cytotoxicity, suggesting that the cytotoxicity was induced by high levels of ROS production. Chlorine dioxide exhibited antiviral activity against different viruses. A baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV), is a dsDNA insect virus and lost its viral activity to form polyhedral viral particles in response to chlorine dioxide. The antiviral activity against AcNPV was dependent on the incubation time with chlorine dioxide. Tobacco mosaic virus is a ssRNA plant virus and was reduced in its population after exposure to chlorine dioxide along with significant decrease of viral symptoms. These results indicate that chlorine dioxide possesses anticancer and antiviral activities probably due to its inducing activity of ROS production.

ATM-induced Radiosensitization in Vitro and in Vivo

  • Choi, E.K.;Ahn, S.D.;Rhee, Y.H.;Chung, H.S.;Ha, S.W.;Song, C.W.;Griffin, R.J.;Park, H.J.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.233-237
    • /
    • 2003
  • It has been known that ATM plays a central role in response of cells to ionizing radiation by enhancing DNA repair. We have investigated the feasibility of increasing radiosensitivity of tumor cells with the use of ATM inhibitors such as caffeine, pentoxifylline and wortmannin. Human colorectal cancer RKO.C cells and RKO-ATM cells (RKO cells overexpressing ATM) were used in the present study. The clonogenic cell survival in vitro indicated that RKO-ATM cells were markdely radioresistant than RKO.C cells. Treatment with 3 mM of caffeine significantly increased the radiosensitivity of cells, particulary the RKO-ATM cells, so that the radiosensitivity of RKO.C cells and RKO-ATM cells were almost similar. The radiation induced G2/M arrest in RKO-ATM cells was noticeably longer than that in RKO.C cells and caffeine treatment significantly reduced the length of the radiation induced G2/M arrest in both RKO.C and RKO-ATM cells. Pentoxifylline and wortmannin were also less effective than caffeine to radiosensitize RKO.C or RKO-ATM cells. However, wortmannin was more effective than caffeine against human lung adenocarcinoma A549 cells indicating the efficacy of ATM inhibitor to increase radiosensitivity is cell line dependent. For in vivo study, RKO.C cells were injected s.c. into the hind-leg of BALB/C-nuslc nude mice, and allowed to grow to 130mm3 tumor. The mice were i.p. injected with caffeine solution or saline and the tumors irradiated with 10 Gy of X-rays. The radiation induced growth delay was markedly increased by 1-2 mg/g of caffeine. It was concluded that caffeine increases radiosensitivity of tumor cells by inhibiting ATM kinase function, thereby inhibiting DNA repair, that occurs during the G2/M arrest after radiation.

Synergistic effect of ionizing radiation and $\beta$-lapachone against tumor in vitro and in vivo

  • Park, Eun-Kyung;Kim, Young-Seok;Lee, Sang-wook;Ahn, Seung-Do;Shin, Seong-Soo;Park, Heon-Joo;Song, Chang-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.80-80
    • /
    • 2003
  • ${\beta}$-lapachone(${\beta}$-Lap), a natural o-naphthoquinone, presents in the bark of the Lapacho tree. ${\beta}$-Lap is cytotoxic against a variety of human cancer cells and it potentiates the anti-tumor effect of Taxol. In addition, ${\beta}$-Lap has been reported to radiosensitize cancer cells by inhibiting the repair of radiation-induced DNA damage.In the present study, we investigated the cytotoxicity of ${\beta}$-Lap against RKO human colorectal cancer cells as well as the combined effect of ${\beta}$-LaP and ionizing radiation. An incubation of RKO cells with 5 ${\mu}$M of ${\beta}$-Lap for 4 h killed almost 90% of the clonogenic cells. An incubation of RKO cells with 5 ${\mu}$M of ${\beta}$-Lap for 4 h or longer also caused massive apoptosis. Unlike other cytotoxic agents, ${\beta}$-Lap did not increase the expression of p53 and p21 and it suppressed the NFkB expression. The expression of Caspase 9 and 3 was minimally altered by ${\beta}$-Lap. Radiation and ${\beta}$-Lap acted synergistically in inducing clonogenic cell death and apoptosis in RKO cells when ${\beta}$-Lap treatment was applied after but not before the radiation exposure of the cells. Interestingly, a 4 h treatment with 5 ${\mu}$M of ${\beta}$-Lap starting 5 h after irradiation was as effective as that starting immediately after irradiation. The mechanisms of ${\beta}$-Lap-induced cell killing is controversial but a recent hypothesis is that ${\beta}$-Lap is activated by NAD(P)H: quinone-onidoreductase (NQO1) in the cells followed by an elevation of cytosolic Ca$\^$2+/ level and activation of proteases leading to apoptosis. It has been reported that NQO1 level in cells is markedly up-regulated for longer than 10 h after irradiation. Indeed, using immunological staining of NQO1, we observed a significant elevation of NQO1 expression in RKO cells 5h after 2-4 Gy irradiation. Such a prolonged elevation of NQO1 level after irradiation may be the reasons why the ${\beta}$-Lap treatment applied S h after irradiation was as effective as that applied immediately after irradiation in killing the cells. In view of the fact that the repair of radiation-induced damage is usually completed within 1-2 h after irradiation, it is highly likely that the ${\beta}$-Lap treahment applied 5 h after irradiation could not inhibit the repair of radiation-induced damage. For in vivo study, RKO cells were injected S.C. into the hind-leg of Nu/Nu mice, and allowed to grow to 130 mm3 tumor. The mice were i.p. injected with ${\beta}$-lapachone or saline 2 h after irradiation of tumors with 10 Gy of X-rays. The radiation induced growth delay was increased by 2.4 $\mu\textrm{g}$/g of ${\beta}$-lapachone. Taken together, we may conclude that the synergistic interaction of radiation and ${\beta}$-Lap in killing cancer cells is not due to radiosensitization by ${\beta}$-Lap but to an enhancement of ${\beta}$-Lap cytotoxicity by radiation through an upregulation of NQO1. The fact that NQO1 is elevated in tumors and that radiation causes prolonged increase of the NQO1 expression may be exploited to preferentially kill tumor cells using ${\beta}$-Lap in combination with radiotherapy.

  • PDF

Comparative Uptake of Tc-99m Sestamibi and Tc-99m Tetrofosmin in Cancer Cells and Tissue Expressing P-Glycoprotein or Multidrug Resistance Associated Protein (P-Glycoprotein과 Multidrug Resistance Associated Protein을 발현하는 암세포와 종양에서 Tc-99m Sestamibi와 Tc-99m Tetrofosmin의 섭취율 비교)

  • Cho, Jung-Ah;Lee, Jae-Tae;Yoo, Jung-Ah;Seo, Ji-Hyoung;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Sohn, Sang-Gyun;Ha, Jeoung-Hee;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.34-43
    • /
    • 2005
  • Purpose: $^{99m}Tc$-sestamibi(MIBI) and $^{99m}Tc$-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of $^{99m}Tc$-MIBI and $^{99m}Tc$-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. Materials and Methods: HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. Results: RT-PCR, western blot analysis of the cells and irnrnunochemical staining revealed selective expression of Pgp and MRP for HCY15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10- and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (p<0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But increases in tumoral uptake were not significantly different between MIBI and tetrofosmin for both tumors. Conclusion: MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators in vitro, but these differences were not evident in vivo tumoral uptake. Both MIBI and tetrofosmin seem to be suitable tracers for imaging Pgp- and MRP-mediated drug resistance in tumors.

Antigenotoxic and Anticarcinogenic Effects of Styela plicata (오만둥이(Styela plicata)의 항유전독성 및 대장암 억제효과에 관한 연구)

  • Seo, Bo-Young;Kim, Jung-Mi;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.839-845
    • /
    • 2009
  • Colorectal cancer is the third most common malignant neoplasm in the world. Much attention has been focused on reducing colon cancer risk through medical properties of natural compound that could act as anticarcinogens. In this study, we evaluated the antioxidant and antigenotoxic effects of Styela plicata (S. plicata) from in vitro experiments. S. plicata extracts showed antioxidant activity measured by TRAP assay and antigenotoxic effect in $200{\mu}M$ $H_2O_2$ induced DNA damage in human leukocytes. Especially, freeze-dried S. plicata extracted with methanol showed the highest level of TRAP (0.225 mM) and inhibition of DNA damage (66.8%). Additionally we observed the effect of S. plicata on the formation of aberrant crypt foci (ACF) induced by dimethylhydrazine (DMH) and DMH induced DNA damage (by comet assay) in male SD rats. The animals were divided into three groups and fed high-fat and low fiber diet (100 g lard+20 g cellulose/kg diet) without (normal control and DMH control) or with a 3% (w/w) of lyophilized S. plicata powder (DMH+S. plicata). One week after beginning the diets, rats were treated with DMH (30 mg/kg, s.c.) for 6 weeks except for normal control group, which was treated saline instead; dietary treatments were continued for the entire experiment. Nine weeks after DMH injection, administration of S. plicata resulted in reduction of ACF numbers, to 82.7% of the carcinogen control value ($7.67{\pm}2.04$ vs. $1.33{\pm}0.53$: p<0.01). S. plicata supplementation induced antigenotoxic effect on DMH-induced DNA damage in the blood cell (% tail intensity: $6.79{\pm}0.26$ vs. $6.13{\pm}0.22$). These data indicate that S. plicata extract has antigenotoxic and anticarcinogenic effects from in vitro experiments and S. plicata exerts a protective effect on the process of colon carcinogenesis, possibly by suppressing the DMH-induced DNA damage in blood cell and the development of preneoplastic lesions in colon.

Combined Treatment of Nonsteroidal Anti-inflammatory Drugs and Genistein Synergistically Induces Apoptosis via Induction of NAG-1 in Human Lung Adenocarcinoma A549 Cells (인간 A549 폐암세포에서 비스테로이드성 항염증제와 genistein의 복합처리에 의한 NAG-1 의존적 세포사멸 증진 효과)

  • Kim, Cho-Hee;Kim, Min-Young;Lee, Su-Yeon;Moon, Ji-Young;Han, Song-Iy;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1073-1080
    • /
    • 2009
  • A number of studies have demonstrated that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the risks of colorectal, oesophageal and lung cancers. NSAIDs have been shown to exert their anti-cancer effects through inducing apoptosis in cancer cells. The susceptibility of tumor cells to anti-tumor drug-induced apoptosis appears to depend on the balance between pro-apoptotic and anti-apoptotic programs such as nuclear factor kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) and MEK1/2-ERK1/2 pathways. We examined the effects of pro-survival PI3K and ERK1/2 signal pathways on cell cycle arrest and apoptosis in response to NSAIDs including sulindac sulfide and NS398. We show that simultaneous inhibition of the Akt/PKB and ERK1/2 signal cascades could synergistically enhance the potential pro-apoptotic activities of sulindac sulfide and NS398. Similar enhancement was observed in cells treated with sulindac sulfide or NS398 and 100 ${\mu}$M genistein, an inhibitor of receptor tyrosine kinases (RTKs) that are upstream of PI3K and MEK1/2 signaling. We further demonstrate that NAG-1 is induced and plays a critical role(s) in apoptosis by NSAIDs-based combined treatment. In sum, our results show that combinatorialtreatment of sulindac sulfide or NS398 and genistein results in a highlysynergistic induction of apoptotic cell death to increase the chemopreventive effects of the NSAIDs, sulindac sulfide and NS398.

Literature review and future tasks necessary to establish of Korean Dietary Reference Intake for choline (콜린의 한국인 영양소 섭취기준 제정 검토를 위한 문헌 고찰 및 향후 과제)

  • Shim, Eugene;Park, Jae-Hee;Lee, Yunjung;Park, Eunju
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.211-226
    • /
    • 2022
  • Choline, an essential nutrient for humans, is required for the structural integrity of the cell membranes, methyl-group metabolism, synthesis of the neurotransmitter acetylcholine, synthesis of the membrane phospholipid components of the cell membranes, and the transport of lipids and cholesterol. Choline can be synthesized in the body, but it is insufficient to meet the daily requirements and hence it must be obtained through the diet. In the United States/Canada, Australia/New Zealand, Europe, China, and Taiwan, the adequate intake (AI) and tolerable upper intake level (UL) of choline have been established, while the establishment of the 2020 Dietary Reference Intakes for Koreans (KDRI) for choline was postponed due to the lack of a choline database for Korean foods and studies on the choline intake of Koreans. However, as part of the preparation work for the 2020 DRI revision and finalization, choline intake and the possibility of disease occurrence were verified through analysis of published data. The groundwork for the subsequent establishment of a choline DRI was laid through a literature search, evaluation, and review of the literature reported from 1949 up to 2019. This can be regarded as the culmination of this project. According to the results of randomized controlled trials (RCTs), cohort studies, case-control studies, and cross-sectional observational studies in humans, approximately 400-500 mg/day of choline intake was effective in preventing liver function damage (fatty liver), neural tube damage, cardiovascular disease, breast cancer, and cognitive function improvement. The same amount of choline intake, however, also correlated with the risk of prostate and colorectal cancer. At present, there is limited information available on choline intake and health outcomes, particularly for the Korean population. More human studies, including clinical trials on the requirements and the physiological benefits associated with dietary intake, are needed to establish the KDRI for choline.

Antioxidative, Antimicrobial, and Anti-proliferative Activities of the Floret and Stalk of Broccoli (Brassica oleracea L.) (브로콜리 꽃송이 및 줄기의 항산화, 항균 및 대장암 세포 생육억제효과)

  • Kim, Mi-Sun;Lee, Ye-Seul;Kwon, Ha-Young;Kim, Jong Sik;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • In the course of study for a use for non-edible parts of broccoli (Brassica oleracea L), and the development of processed food utilizing these parts, edible floret and non-edible stalk were extracted with ethanol and different organic solvent fractions were prepared. With 10 different extracts and fractions, their useful components and various biological activities, such as antioxidant, antimicrobial and anti-proliferation activity, were investigated. The stalk has more abundant water soluble carbohydrate when compared with the floret, and floret has higher hexane-soluble pigments. Analysis of total flavonoid and total polyphenol contents showed that the floret has 1.5~1.99 times higher concentrations than the stalk. Among the fractions, ethylacetate (EA) fractions have the highest amount of total flavonoid and total polyphenol. The stalk and floret possessed 9.45 and 42.01 mg-total flavonoid/g, respectively. In the antioxidation activity assay, the EA fraction of floret showed strong radical scavenging activity and reducing power, while the n-hexane fraction of the stalk exhibited nitrite scavenging activity. In the antimicrobial activity assay, the EA fraction of floret showed a strong and broad-range of antibacterial activity, irrespective of gram positive or gram negative bacteria. In a while, the hexane and EA fractions revealed anti-proliferative effects against the human colorectal cancer cell HCT-116. Strong anti-proliferative activities were found in the hexane fraction of stalk (18.4% of cell viability), and the n-butanol fraction of floret (6.9% of cell viability). Our results suggest that the further study of the characterization of active fractions and the identification of active components from different parts of broccoli are needed to develop functional foods or novel plant-derived medicines.

Reversal of Multidrug Resistance with KR-30035: Evaluated with Biodistribution of Tc-99m MIBI in Nude Mice Bearing Human Tumor Xenografts (이종이식된 인체종양에서 KR-30035가 Tc-99m MIBI체내 분포에 미치는 영향으로 평가한 다약제내성 역전가능성)

  • Kim, Jung-Kyun;Lee, Byung-Ho;Choi, Sang-Woon;Yoo, Sung-Eun;Lee, Sang-Woo;Chun, Kyung-Ah;Ahn, Byeong-Cheol;Park, Jae-Young;Suh, Jang-Soo;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.168-184
    • /
    • 2001
  • Purpose: KR-30035 (KR), a new MDR reversing agent, has been found to produce a similar degree of increased Tc-99m MIBI uptake in cultured tumor cells over-expressing mdr1 mRNA compared to verapamil (VP), with less cardiovascular effects. We assessed the MDR-reversing ability of KR in vivo, and effects of various doses of KR on MIBI uptake un nude mice hearing P-glycoprotein (P-gp) positive (+) and P-gp negative (-) human tumor xenografts. Methods: P-gp (+) HCT15/CL02 colorectal and P-gp (-) A549 non-small cell cancer cells were inoculated in each flank of 120 nude mice (20 mice ${\times}$ 6 groups). Group 1 (Gr1) mice received 10mg/kg KR i.p. 3 times $({\times}3)$; Gr2, 10mg/kg VP i.p. ${\times}3$; Gr3, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.p. ${\times}1$; Gr4, 10mg/kg KR i.p. ${\times}2$ + 50mg/kg i.p. ${\times}1$; Gr5, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.v. ${\times}1$, GrC, controls. The mice were then injected with Tc-99m MIBI and sacrificed after 10 min, 30 min, 90 min and 240 min. Tumor uptake of MIBI (TU) in each group was compared. Results: TU in P-gp (+) and (-) tumors were both higher in Gr1 than Gr2. Washout rate between the 10 min and 4 hours was lower in Gr5 of P-gp (+) cell(0.93) than the control. Percentage increases in TU were higher in P-gp (+) than P-gp (-) tumors with all KR doses. Pgp (+) TU were highest at 10 mon (173% of GrC) and persisted up to 240 min (144%) in Gr3. Larger doses of KR resulted in a lesser degree of increase in P-gp (+) TU at 10 min (130% in Gr4 and 117% un Gr5) and 30 min (178%, 129%), but TU increased by time up to 240 min (177%, 196%). Heart and lung uptakes were markedly increased in Gr4 and Gr5 at 10 and 30 min, likely due to cardiovascular effects. No mice died. Conclusion: These data further suggest that KR that has significantly lower cardiovascular toxicity than verapamil can be used as an active inhibitor of MDR. Even a relatively low dose of KR significantly increased Tc-99m MIBI uptake in P-gp (+) tumors in vivo.

  • PDF