• 제목/요약/키워드: human colorectal cancer cell

검색결과 201건 처리시간 0.027초

New Model of In-situ Xenograft Lymphangiogenesis by a Human Colonic Adenocarcinoma Cell Line in Nude Mice

  • Sun, Jian-Jun;Jing, Wei;Ni, Yan-Yan;Yuan, Xiao-Jian;Zhou, Hai-Hua;Fan, Yue-Zu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2823-2828
    • /
    • 2012
  • Objective: To explore a new model of in-situ xenograft lymphangiogenesis of human colonic adenocarcinomas in nude mice. Method: On the basis of establishing subcutaneous xenograft lymphangiogenesis model of human colonic adenocarcinoms, in-situ xenografts were established through the in situ growth of the HT-29 human colonic adenocarcinoma cell line in nude mice. The numbers of lymphangiogenic microvessels, the expression of lymphatic endothelial cell markers lymphatic vessel endothelial hyaloronic acid receptor-1 (LYVE-1), D2-40 and the lymphatic endothelial growth factors vascular endothelial growth factor-C (VEGF-C), -D (VEGF-D) and receptor-3 (VEGFR-3) were compared by immunohistochemical staining, Western bolt and quantitative RT-PCR in xenograft in-situ models. Results: Some microlymphatics with thin walls, large and irregular or collapsed cavities and increased LMVD, with strong positive of LYVE-1, D2-40 in immunohistochemistry, were observed, identical with the morphological characteristics of lymphatic vessels and capillaries. Expression of LYVE-1 and D2-40 proteins and mRNAs were significantly higher in xenograpfts in-situ than in the negative control group(both P<0.01). Moreover, the expression of VEGF-C, VEGF-D and VEGFR-3 proteins and mRNAs were significantly higher in xenografts in-situ (both P<0.01), in conformity with the signal regulation of the VEGF-C,-D/VEGFR-3 axis of tumor lymphangiogenesis. Conclusions: In-situ xenografts of a human colonic adenocarcinoma cell line demonstrate tumor lymphangiogenesis. This novel in-situ animal model should be useful for further studying mechanisms of lymph node metastasis, drug intervention and anti-metastasis therapy in colorectal cancer.

해양생물 추출물의 대장암세포주에 대한 항암 작용 검색 (Anti-cancer Effect of Marine Resources Against Human Colorectal Cancer Cells)

  • 정주희
    • 한국식품위생안전성학회지
    • /
    • 제32권1호
    • /
    • pp.70-74
    • /
    • 2017
  • 해양생물자원은 차세대 바이오산업의 중요한 자원으로 관심이 증대되고 있다. 다양한 해양생물자원이 생물학적 활성을 가지고 있을 것으로 기대됨에도 불구하고, 지금까지는 시료 채취의 어려움 등으로 개발에 제한이 있었다. 해면동물, 해조류, 산호 등의 대부분의 해양생물자원들이 험난한 환경에서 살아남기 위해 특수한 대사산물을 만들어 낼 것으로 여겨지고 있어 이를 활용하기 위한 노력들이 기울여지고 있다. 많은 종류의 해양생물자원 중에서 바이오산업에 활용할 수 있는 항암, 항균, 항바이러스 및 항암 작용 등과 같은 생물학적 활성을 가진 물질을 선별하는 것이 시급한 실정이다. 본 연구에서는 항암 작용을 갖는 해양생물자원을 도출하기 위하여 사람유래 대장암 세포주에서 세포독성시험을 실시하였다. 해양생물자원은 2013년 3월 마크로네시아에서 채취한 샘플들로 메탄올로 추출한 물질을 사용하였다. 해양생물자원의 세포독성시험을 실시하여 20개의 시료 중에서 3개의 시료에서 농도의존적인 세포 생존을 억제하는 것을 확인하였다. 검색된 시료들 중 2종만이 동정되어, 해면동물 Hyrtios sp.임이 밝혀졌다. 한종은 아직 밝혀지지 않은 상태로 추가적인 연구를 통해 동정이 필요하였다. Hyrtios sp. 추출물(1304KO-327과 1304KO-329)의 HCT116세포 증식억제작용은 이전 연구에서 보고된 RKO에서의 작용과 일치함을 알 수 있었다. 대장암세포주의 생존 억제 활성을 밝혀낸 3종의 도출 물질은 앞으로의 지속적인 연구를 통해 추출물 중의 항암 활성 물질을 규명함으로써 바이오산업의 새로운 개발 자원으로 활용될 것이 기대된다.

Chemotherapeutic Candidate Inducing Immunological Death of Human Tumor Cell Lines

  • Oh, Su-Jin;Ryu, Chung-Kyu;Choi, In-Hak;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • 제12권2호
    • /
    • pp.66-69
    • /
    • 2012
  • The immunological death induction by EY-6 on the human tumor cell lines was screened. Human colon carcinoma (HCT15, HCT116), gastric carcinoma (MKN74, SNU668), and myeloma (KMS20, KMS26, KMS34) cells were died by EY-6 treatment with dose-dependent manner. CRT expression, a typical marker for the immunological death, was increased on the EY-6-treated colorectal and gastric cancer cells. Interestingly, the effects on the myeloma cell lines were complicated showing cell line dependent differential modulation. Cytokine secretion from the EY-6 treated tumor cells were dose and cell-dependent. IFN-${\gamma}$ and IL-12 secretion was increased in the treated cells (200% to over 1000% of non-treated control), except HCT116, SNU668 and KMS26 cells which their secretion was declined by EY-6. Data suggest the potential of EY-6 as a new type of immuno-chemotherapeutics inducing tumor-specific cell death. Further studies are planned to confirm the efficacy of EY-6 including in vivo study.

결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도 (Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells)

  • 최영현
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.400-409
    • /
    • 2021
  • 천연 benzophenanthridine alkaloid의 일종인 sanguinarine에 의한 인간 암세포에서의 세포사멸 유도는 암 치료를 위한 잠재적 치료 가능성으로 여겨져 왔으나 기본적인 항암 기전은 여전히 불분명하다. 종양 억제제 p53의 결실 또는 돌연변이는 결장암세포의 항암제 내성에 대한 주요 원인으로 작용하다. 따라서, 본 연구에서는 정상 p53을 가진 HCT116 (p53+/+) 및 p53이 결여된 HCT116 (p53-/-) 결장암세포를 대상으로 sanguinarine에 의해 유도되는 세포사멸에서 p53의 역할을 조사하였다. 본 연구의 결과에 의하면, sanguinarine은 HCT116 (p53-/-) 세포에 비하여 HCT116 (p53+/+) 세포의 생존력을 현저히 감소시켰다. 아울러 sanguinarine은 HCT116 (p53-/-) 세포보다 HCT116 (p53+/+) 세포에서 p53 및 cyclin-dependent kinase 억제제 p21WAF1/CIP1의 발현을 증가시키면서 DNA 손상 및 세포사멸의 유도를 증가시켰다. Sanguinarine은 HCT116 (p53+/+) 세포에서 외인성 및 내인성 세포사멸의 개시에 관여하는 caspase-8 및 caspase-9의 활성을 증가시켰으며, 전형적인 효과기 caspase인 caspase-3을 활성화시켰다. 또한, sanguinarine은 HCT116 (p53+/+) 세포에서 Bax/Bcl-2의 발현 비율을 증가시키고 미토콘드리아 손상을 유발하였지만, HCT116 (p53-/-) 세포에서는 이러한 현상이 관찰되지 않았다. 결론적으로 본 연구의 결과는 sanguinarine은 HCT116 결장암세포에서 p53 의존적으로 외인성 및 내인성 세포사멸의 경로 활성을 통하여 세포사멸을 유도하였음을 의미한다.

Microarray Analysis of Long Non-coding RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells

  • Xiong, Wei;Jiang, Yong-Xin;Ai, Yi-Qin;Liu, Shan;Wu, Xing-Rao;Cui, Jian-Guo;Qin, Ji-Yong;Liu, Yan;Xia, Yao-Xiong;Ju, Yun-He;He, Wen-Jie;Wang, Yong;Li, Yun-Fen;Hou, Yu;Wang, Li;Li, Wen-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3395-3402
    • /
    • 2015
  • Background: Preoperative 5-fluorouracil (5-FU)-based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer (CRC). However, CRC cells often develop chemoradiation resistance (CRR). Recent studies have shown that long non-coding RNA (lncRNA) plays critical roles in a myriad of biological processes and human diseases, as well as chemotherapy resistance. Since the roles of lncRNAs in 5-FU-based CRR in human CRC cells remain unknown, they were investigated in this study. Materials and Methods: A 5-FU-based concurrent CRR cell model was established using human CRC cell line HCT116. Microarray expression profiling of lncRNAs and mRNAs was undertaken in parental HCT116 and 5-FU-based CRR cell lines. Results: In total, 2,662 differentially expressed lncRNAs and 2,398 mRNAs were identified in 5-FU-based CRR HCT116 cells when compared with those in parental HCT116. Moreover, 6 lncRNAs and 6 mRNAs found to be differentially expressed were validated by quantitative real time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated involvement of many, such as Jak-STAT, PI3K-Akt and NF-kappa B signaling pathways. To better understand the molecular basis of 5-FU-based CRR in CRC cells, correlated expression networks were constructed based on 8 intergenic lncRNAs and their nearby coding genes. Conclusions: Changes in lncRNA expression are involved in 5-FU-based CRR in CRC cells. These findings may provide novel insight for the prognosis and prediction of response to therapy in CRC patients.

5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과 (Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells)

  • 이윤석;이종숙;김정애
    • 약학회지
    • /
    • 제53권4호
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제16권2호
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Benzotriazepin 유도체의 암세포에 대한 다약제내성 억제효과 (Reversal of Multidrug Resistance by Benzotriazepin Analogues in Cancer Cells)

  • 김미혜;최상운;최은정;김성수;최중권;안진희;이정옥;권광일
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.38-43
    • /
    • 2005
  • The occurrence of resistance to chemotherapeutic drugs is a major problem for successful cancer treatment. This resistant phenotype of cancer cell frequently reveals a broad spectrum to structurally and/or functionally unrelated anticancer drugs, termed multidrug resistance (MDR). Overexpression of P-glycoprotein (P-gp), a transmembrane drug efflux pump, is a major mechanism of MDR. Accordingly, considerable effort has been directed towards to development of compounds that inhibit P-gp, reverse the MDR phenotype and sensitize cancer cells to conventional chemotherapy without undesired toxicological effects. In an effort to search for novel MDR reversal agent, we tested the cytotoxicity of paclitaxel, a well-known substrate of P-gp, against P-gp-expressing HCT15 and HCT15/CL02 human colorectal cancer cells in the presence or absence of benzotriazepin analogues, as well as against P-gp-negative A549 human non-small cell lung and SK-OV-3 human ovarian cancer cells in vitro. Among the compounds tested, the agents that have phenyl amide moiety at 3 position remarkably increased the cytotoxicity of paclitaxel against P-gp-expressing cancer cells, but not against P-gp-negative cancer cells. BTZ-15 and BTZ-16 at $4\;{\mu}M$ revealed similar MDR reversal activity to $10\;{\mu}M$ verapamil, a well-known MDR reversal agent.

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.