• Title/Summary/Keyword: human carcinoma cells

Search Result 871, Processing Time 0.023 seconds

Inhibitory Effects of Garlic on the Mutagenicity in Salmonella Assay System and on the Growth of HT-29 Human Colon Carcinoma Cells (마늘의 돌연변이유발 억제 및 HT-29 결장암 세포의 성장저해 효과)

  • Park, Kun-Young;Kim, So-Hee;Suh, Myung-Ja;Chung, Hae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.370-374
    • /
    • 1991
  • The inhibitory effects of garlic on the mutagenicity in Salmonella assay system and on the growth of HT-29 human colon carcinoma cells were studied. Methanol extract of garlic inhibited the mutagenicities induced by aflatoxin $B_1(AFB_1)$and N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) in Salmonella typhimurium TA100. The inhibition rate increased significantly when the concentration of the methanol extract from garlic increased in both strains of Salmonella typhimurium TA98 and TA100. The chloroform fraction from the methanol extract exhibited strong antimutagenicity against $AFB_1$. The chloroform fraction also inhibited greatly the growth of human HT-29 colon carcinoma cells in fetal bovine serum concentrations of 1% and 5%.

  • PDF

Snake Venom-enhanced Cytotoxic Effect of Natural Killer Cells on A549 Human Lung Cancer Cell Growth (사독의 인체 폐암세포(A549)에 대한 Natural Killer 세포 세포독성 촉진 효과)

  • Lee, Ji In;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.79-88
    • /
    • 2015
  • Objectives : The purpose of this research was to investigate the cytotoxic effect of Natural Killer(NK)-92 cell and Snake Venom, and to elucidate its mechanism on human lung carcinoma cell A549. Methods : In order to figure out whether Snake Venom enhances the cytotoxic effect of NK-92 cell in A549 cell, Cell Viability Assay was conducted. Also, in order to observe the changes of Caspase-3 and Caspase-8, both of which are proteinases that advance apoptosis, and the changes of TNRF and DR3, which are Death Receptors of the extrinsic pathway of apoptosis, Western Blot Analysis was conducted. By conducting RT-PCR analysis, we have tried to confirm Perforin, Granzyme B, and GADPH, all of which are cytotoxic-related proteins. Lastly, in order to observe the effect of Snake Venom on NO formation within human lung carcinoma cells, NO determination was conducted. Results : 1. After conducting Cell Viability Assay, Snake Venom enhanced the cytotoxic effect of NK-92 cell and inhibited the growth of A549. 2. Western Blot Analysis caused proteinases Caspase-3 and Caspase-8, which advance apoptosis, to increase in the combined treatment group, but not in treatment groups that focused only on either Snake Venom or NK-92 cell in A549 lung carcinoma cells. 3. Western Blot Analysis caused an expression of TNFR2 and DR3, both of which are Death Receptors of the apoptosis extrinsic pathway, in the combined treatment group, but not intreatment groups that focused only on either Snake Venom or NK-92 cell in A549 human lung carcinoma cells. 4. After conducting NO determination, NO formation within A549 cell showed no significant changes in both treatment groups that focused NK-92 cell and combined treatment group. 5. After conducting RT-PCR, the expression of Granzyme B and Perforin, which are cytotoxic-related proteins within A549 human lung carcinoma cells, showed growth in the combined treatment group, but not the treatment group that focused only on NK-92 cell. Conclusion : It has been indicated that, when it comes to the A549 cell, Snake Venom enhances the increase of Death Receptor expression and continuous apoptosis reaction, leading to the enhancement of the cancer cell cytotoxic effect of the NK-92 cell. It is expected that Snake Venom can be used with the NK-92 cell for further lung cancer treatment.

Talin-1 Correlates with Reduced Invasion and Migration in Human Hepatocellular Carcinoma Cells

  • Fang, Kun-Peng;Zhang, Jian-Lin;Ren, Yan-Hong;Qian, Ye-Ben
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2655-2661
    • /
    • 2014
  • Background: Talin-1 is a cytoskeleton protein that participates in cell migration and plays a role in tumor formation, migration, and metastasis in different types of cancer. Chinese investigators have observed that the levels of Talin-1 protein and mRNA expression in HCC tissues are significantly lower than in the adjacent non-cancerous tissue. However, Japanese investigators have reported that Talin-1 is upregulated in HCC. Tln2 as homologous gene of Tln-1, which encodes a very similar protein, but the role of Talin-2 is very little known in primary liver cancer (PLC). We investigated whether the expression of Talin-1 in PLC may be associated with the histological subtype as well as the role of Talin-1 in tumor cell invasion and migration using human hepatocellular carcinoma cell lines. Materials and Methods: We measured the mRNA expression levels of Talin-1 and Talin-2 in five human liver cancer cell lines and normal human liver cell ($LO_2$ cell line) by real-time PCR and the protein expression levels of Talin-1 by Western blot. Migration and invasion of the cells were assessed using transwell assays and cell scratch experiments, respectively, and proliferation was assessed by soft AGAR colony formation. Results: Talin-1 and Talin-2 expression differed significantly between the five human liver cancer cell lines and $LO_2$ cell line (p<0.05). Compared with the $LO_2$ cell line, the invasion and migration capabilities of the five cancer cell lines differed significantly (p<0.05). Similarly, the colony-forming ability differed (p<0.05). Conclusions: High levels of Talin-1 expression are correlated with reduced invasion and migration as well as decreased malignancy in human liver cancer cell lines; the suppression of Talin-1 promotes invasion and migration. In addition, Talin-2 may be correlated with invasion and migration in human hepatocellular carcinoma.

Anticancer Effect of Thymol on AGS Human Gastric Carcinoma Cells

  • Kang, Seo-Hee;Kim, Yon-Suk;Kim, Eun-Kyung;Hwang, Jin-Woo;Jeong, Jae-Hyun;Dong, Xin;Lee, Jae-Woong;Moon, Sang-Ho;Jeon, Byong-Tae;Park, Pyo-Jam
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Numerous plants have been documented to contain phenolic compounds. Thymol is one among these phenolic compounds that possess a repertoire of pharmacological activities, including anti-inflammatory, anticancer, antioxidant, antibacterial, and antimicrobial effects. Despite of the plethora of affects elicited by thymol, its activity profile on gastric cancer cells is not explored. In this study, we discovered that thymol exerts anticancer effects by suppressing cell growth, inducing apoptosis, producing intracellular reactive oxygen species, depolarizing mitochondrial membrane potential, and activating the proapoptotic mitochondrial proteins Bax, cysteine aspartases (caspases), and poly ADP ribose polymerase in human gastric AGS cells. The outcomes of this study displayed that thymol, via an intrinsic mitochondrial pathway, was responsible for inducing apoptosis in gastric AGS cells. Hence, thymol might serve as a tentative agent in the future to treat cancer.

Effects of Monoclonal Antibodies against Human Stathmin Combined with Paclitaxel on Proliferation of the QG-56 Human Lung Carcinoma Cell Line

  • Yuan, Shao-Fei;Chen, Wen-Jun;Zhu, Lin-Jia;Zheng, Wei-E.;Chen, Hua;Xiong, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2967-2971
    • /
    • 2012
  • Objective: To explore whether monoclonal antibodies against stathmin and the chemotherapuetic agent paclitaxel have synergenic effects in inhibiting growth and inducing apoptosis in human QG-56 cells. Methods: QG-56 cells were treated with monoclonal antibodies against stathmin or paclitaxel alone or in combination, with untreated cells used as controls. After 24, 48, 72 and 96 hours the cell growth condition was observed under an inverted microscope and inhibition was studied by MTT assay; apoptosis was analyzed by flow cytometry. Results: The populations decreased and cell shape and size changed after the various treatments. Monoclonal antibodies against stathmin and paclitaxel used alone or incombination inhibited the proliferation of QG-56 cells, especially in combination with synergism (P<0.05). Combined treatment also resulted in a significantly higher apoptosis rate than in the other groups (P<0.05). Conclusions: Monoclonal antibodies against stathmin and paclitaxel used alone or in combination can inhibit proliferation of QG-56 cells and induce apoptosis when applied together. The observed synergistic effects may have important implications for clinical application.

Apoptosis of Human Lung Carcinoma Cells through the Inhibition of Bcl-2 Expression and Activation of Caspase by Chungjogupae-tang (인체폐암세포에서 Bcl-2 발현저하 및 caspase 활성을 통한 청조구폐탕의 apoptosis 유발에 관한 연구)

  • Cho, In-Joo;Gam, Chul-Woo;Kim, Ki-Tak;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.93-97
    • /
    • 2007
  • We previously reported the anti-proliferative effect of Chungjogupae-tang (CJGPT) in human lung carcinoma A549 cells, which was associated with the induction of cyclin-dependent kinase inhibitor p21 in a tumor suppressor p53-independent manner. CJGPT treatment also resulted in the inhibition of prostaglandin E2 release A549 cells by the down-regulation of cyclooxygenase-2. In the present study, we investigated the pathway of the induction of apoptotic cell death by CJGPT in A549 cells. It was found that CJGPT could inhibit the cell viability and induce the apoptotic cell death of A549 cells in a dose-dependent manner as measured by hemocytometer counts, flow cytometry analysis and agarose gel electrophoresis. Apoptosis of A549 cells by CJGPT was associated with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. Additionally, DNA fragmentation by CJGPT was connected with the activation of inhibitor of caspase-activated DNase/DNA fragmentation factor 45 (ICAD/DFF45) protein expression.

$\beta$-Alanine Induced Down-Regulation of the Taurine Transporter Activity in the Human Colon Carcinoma Cell Line (HT-29) (인체 소장상피세포주 모델(HT-29)에서 $\beta$-알라닌이 타우린수송체 활성에 미치는 영향)

  • 박태선;윤미영;정한나;이해미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.314-319
    • /
    • 2001
  • In the present study, effects of $\beta$-alanine, a known taurine antagonist for its structural similarity, on the adaptive regulation and kinetic behavior of the taurine transporter were investigated in the HT-29, human colon carcinoma cell line. Pretreatment of the cell with $\beta$-alanine(10mM) for varying periods from 3 to 30 hrs significantly reduced the taurine uptake compared to the value for control cells. This decrease in the taurine transporter activity was dependent on the incubation time with $\beta$-alanine, and the maximal down-regulation of the transporter activity was observed in cells pretreated with $\beta$-alanine for 24 hrs (25% of the control value, p<0.01). The taurine transporter appears to bind exclusively with $\beta$-alanine in the HT-29 cells since the same concentration of $\alpha$-alanine added in the culture medium for 24 hrs did not influence the taurine uptake. Kinetic analyses of the taurine transporter activity was performed in the HT-29 cell line with varying taurine concentration (5~60$\mu$M) in the uptake medium. Active taurine uptake was significantly lower in $\beta$-alanine pretreated cells compared to the value for control cells in the range of taurine concentration used in the experiment (p<0.001). The cells pretreated with $\beta$-alanine showed a 50% lower maximal velocity (Vmax, 1.7$\pm$2.0 nmole.mg $protein^{-1}$.$30min^{-1}$), and a 99% higher Michaelis constant (Km, 40.3$\pm$7.6$\mu$M) than the control values (3.3$\pm$1.9 nmole.mg $protein^{-1}$.$30min^{-1}$, and 20.3$\pm$2.1$\mu$M, respectively). These results on kinetic data suggest that $\beta$-alanine induced down-regulation of the taurine transporter activity was associated with decreases in both maximal velocity and affinity of the transporter.

  • PDF

Mechanism underlying Chios gum mastic-induced apoptosis on SCC25 human tongue squamous cell carcinoma cell line

  • Lee, Seung-Eun;Hur, Young-Joo;Kim, In-Ryoung;Kwak, Hyun-Ho;Kim, Gyoo-Cheon;Shin, Sang-Hun;Kim, Chul-Hoon;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.61-72
    • /
    • 2009
  • Chios gum mastic (CGM) is a resin produced from the stem and leaves of Pistiacia lentiscus L var chia, a plant which grows only on Chios Island in Greece. CGM has been used for many centuries as a dietary supplement and folk medicine for stomach and duodenal ulcers in many Mediterranean countries and is known also to induce cell cycle arrest and apoptosis in some cancer cells. In this study, we further investigated the induction and mechanisms underlying the apoptotic response to CGM treatment in the SCC25 human tongue squamous cell carcinoma cell line. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingival fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay, respectively. Staining with Hoechst and hemacolor dyes and TUNEL assays were employed to detect SCC25 cells undergoing apoptosis. SCC25 cells were treated with CGM, and this was followed by western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, MMP activity and proteasome activity analyses. CGM treatment of SCC25 cells was found to result in a time- and dosedependent decrease in cell viability, a dose-dependent inhibition of cell growth, and apoptotic cell death. Interestingly, CGM showed a remarkable level of cytotoxicity in SCC25 cells but not in normal cells. Tested SCC25 cells also showed several lines of apoptotic manifestation. Taken together, our present findings demonstrate that CGM strongly inhibits cell proliferation by modulating the expression of G1 cell cycle-related proteins and induces apoptosis via the proteasome, mitochondria and caspase cascades in SCC25 cells.

Up-regulation of NICE-3 as a Novel EDC Gene Could Contribute to Human Hepatocellular Carcinoma

  • Wei, Yuan-Jiang;Hu, Qin-Qin;Gu, Cheng-Yu;Wang, Yu-Ping;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4363-4368
    • /
    • 2012
  • The epidermal differentiation complex (EDC) contains a large number of gene products which are crucial for the maturation of the human epidermis and can contribute to skin diseases, even carcinogenesis. It is generally accepted that activation of oncogenes and/or inactivation of tumor suppressor genes play pivotal roles in the process of carcinogenesis. Here, NICE-3, a novel EDC gene, was found to be up-regulated in human hepatocellular carcinoma (HCC) by quantitative real-time RT-PCR. Furthermore, overexpression of exogenous NICE-3 by recombinant plasmids could significantly promote cell proliferation, colony formation and soft agar colony formation in Focus and WRL-68 HCC cell lines. Reversely, NICE-3 silencing by RNA interference could markedly inhibit these malignant phenotypes in YY-8103 and MHCC-97H cells. Moreover, cell cycle analysis of MHCC-97H transfected with siRNA by flow cytometry showed that NICE-3 knockdown may inhibit cell growth via arrest in G0/G1 phase and hindering entry of cells into S phase. All data of our findings indicate that NICE-3 may contribute to human hepatocellular carcinoma by promoting cell proliferation.

Growth, Clonability, and Radiation Resistance of Esophageal Carcinoma-derived Stem-like Cells

  • Li, Jian-Cheng;Liu, Di;Yang, Yan;Wang, Xiao-Ying;Pan, Ding-Long;Qiu, Zi-Dan;Su, Ying;Pan, Jian-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4891-4896
    • /
    • 2013
  • Objective: To separate/enrich tumor stem-like cells from the human esophageal carcinoma cell line OE-19 by using serum-free suspension culture and to identify their biological characteristics and radiation resistance. Methods: OE-19 cells were cultivated using adherent and suspension culture methods. The tumor stem-like phenotype of CD44 expression was detected using flow cytometry. We examined growth characteristics, cloning capacity in soft agar, and radiation resistance of 2 groups of cells. Results: Suspended cells in serum-free medium formed spheres that were enriched for CD44 expression. CD44 was expressed in 62.5% of suspended cells, but only in 11.7% of adherent cells. The suspended cells had greater capacity for proliferation and colony formation in soft agar than the adherent cells. When the suspended and adherent cells were irradiated at 5 Gy, 10 Gy, or 15 Gy, the proportion of CD44+ suspended cells strongly and weakly positive for CD44 was 77.8%, 66.5%, 57.5%; and 21.7%, 31.6%, 41.4%, respectively. In contrast, the proportion of CD44+ adherent cells strongly positive for CD44 was 18.9%, 14.%, and 9.95%, respectively. When the irradiation dose was increased to 30 Gy, the survival of the suspended and adherent cells was significantly reduced, and viable CD44+ cells were not detected. Conclusion: Suspended cell spheres generated from OE-19 esophageal carcinoma cells in serum-free stem medium are enriched in tumor stem-like cells. CD44 may be a marker for these cells.