• 제목/요약/키워드: human activity recognition system

검색결과 83건 처리시간 0.029초

스마트폰 센서를 이용하여 행동을 인식하기 위한 계층적인 심층 신뢰 신경망 (Hierarchical Deep Belief Network for Activity Recognition Using Smartphone Sensor)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1421-1429
    • /
    • 2017
  • Human activity recognition has been studied using various sensors and algorithms. Human activity recognition can be divided into sensor based and vision based on the method. In this paper, we proposed an activity recognition system using acceleration sensor and gyroscope sensor in smartphone among sensor based methods. We used Deep Belief Network (DBN), which is one of the most popular deep learning methods, to improve an accuracy of human activity recognition. DBN uses the entire input set as a common input. However, because of the characteristics of different time window depending on the type of human activity, the RBMs, which is a component of DBN, are configured hierarchically by combining them from different time windows. As a result of applying to real data, The proposed human activity recognition system showed stable precision.

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Real-time Recognition of Daily Human Activities Using A Single Tri-axial Accelerometer

  • Rubaiyeat, Husne Ara;Khan, Adil Mehmood;Kim, Tae-Seong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.289-292
    • /
    • 2010
  • Recently human activity recognition using accelerometer has become a prominent research area in proactive computing. In this paper, we present a real-time activity recognition system using a single tri-axial accelerometer. Our system recognizes four primary daily human activities: namely walking, going upstairs, going downstairs, and sitting. The system also computes extra information from the recognized activities such as number of steps, energy expenditure, activity duration, etc. Finally, all generated information is stored in a database as daily log.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.

Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM

  • Kamal, Shaharyar;Jalal, Ahmad;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1857-1862
    • /
    • 2016
  • Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.

Human Activity Recognition with LSTM Using the Egocentric Coordinate System Key Points

  • Wesonga, Sheilla;Park, Jang-Sik
    • 한국산업융합학회 논문집
    • /
    • 제24권6_1호
    • /
    • pp.693-698
    • /
    • 2021
  • As technology advances, there is increasing need for research in different fields where this technology is applied. On of the most researched topic in computer vision is Human activity recognition (HAR), which has widely been implemented in various fields which include healthcare, video surveillance and education. We therefore present in this paper a human activity recognition system based on scale and rotation while employing the Kinect depth sensors to obtain the human skeleton joints. In contrast to previous approaches that use joint angles, in this paper we propose that each limb has an angle with the X, Y, Z axes which we employ as feature vectors. The use of the joint angles makes our system scale invariant. We further calculate the body relative direction in the egocentric coordinates in order to provide the rotation invariance. For the system parameters, we employ 8 limbs with their corresponding angles each having the X, Y, Z axes from the coordinate system as feature vectors. The extracted features are finally trained and tested with the Long short term memory (LSTM) Network which gives us an average accuracy of 98.3%.

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.

A Robust Approach for Human Activity Recognition Using 3-D Body Joint Motion Features with Deep Belief Network

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1118-1133
    • /
    • 2017
  • Computer vision-based human activity recognition (HAR) has become very famous these days due to its applications in various fields such as smart home healthcare for elderly people. A video-based activity recognition system basically has many goals such as to react based on people's behavior that allows the systems to proactively assist them with their tasks. A novel approach is proposed in this work for depth video based human activity recognition using joint-based motion features of depth body shapes and Deep Belief Network (DBN). From depth video, different body parts of human activities are segmented first by means of a trained random forest. The motion features representing the magnitude and direction of each joint in next frame are extracted. Finally, the features are applied for training a DBN to be used for recognition later. The proposed HAR approach showed superior performance over conventional approaches on private and public datasets, indicating a prominent approach for practical applications in smartly controlled environments.

채널 상태 정보를 활용한 LoS/NLoS 식별 기반 인간 행동 인식 시스템 (LoS/NLoS Identification-based Human Activity Recognition System Using Channel State Information)

  • 권혁돈;권정혁;이솔비;김의직
    • 사물인터넷융복합논문지
    • /
    • 제10권3호
    • /
    • pp.57-64
    • /
    • 2024
  • 본 논문에서는 수신환경에 따라 변화하는 인간 행동 인식 (Human Activity Recognition, HAR)의 정확도를 향상시키기 위해 채널 상태 정보 (Chanel State Information, CSI)를 활용한 Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) 식별 기반 HAR 시스템을 제안한다. 제안 시스템은 수신환경을 고려한 HAR 시스템을 위해 Preprocessing phase, Classification phase, Activity recognition phase의 세 동작 단계를 포함한다. Preprocessing phase에서는 CSI 원시 데이터로부터 진폭이 추출되고, 추출된 진폭 내 노이즈가 제거된다. Classification phase에서는 데이터 수신환경이 LoS 환경 또는 NLoS 환경으로 분류되고, 수신환경 분류 결과를 기반으로 HAR 모델이 결정된다. 마지막으로, Activity recognition phase에서는 결정된 HAR 모델을 활용하여 인간의 동작을 앉기, 걷기, 서 있기, 부재중으로 분류한다. 제안 시스템의 우수성을 입증하기 위해, 실험적 구현을 수행하였으며 제안 시스템의 정확도를 기존 HAR 시스템의 정확도와 비교하였다. 실험 결과, 제안 시스템은 대조군 대비 16.25% 더 높은 정확도를 달성하였다.

Development of a Machine-Learning based Human Activity Recognition System including Eastern-Asian Specific Activities

  • Jeong, Seungmin;Choi, Cheolwoo;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this study is to develop a human activity recognition (HAR) system, which distinguishes 13 activities, including five activities commonly dealt with in conventional HAR researches and eight activities from the Eastern-Asian culture. The eight special activities include floor-sitting/standing, chair-sitting/standing, floor-lying/up, and bed-lying/up. We used a 3-axis accelerometer sensor on the wrist for data collection and designed a machine learning model for the activity classification. Data clustering through preprocessing and feature extraction/reduction is performed. We then tested six machine learning algorithms for recognition accuracy comparison. As a result, we have achieved an average accuracy of 99.7% for the 13 activities. This result is far better than the average accuracy of current HAR researches based on a smartwatch (89.4%). The superiority of the HAR system developed in this study is proven because we have achieved 98.7% accuracy with publically available 'pamap2' dataset of 12 activities, whose conventionally met the best accuracy is 96.6%.