• Title/Summary/Keyword: human TRPA1

Search Result 3, Processing Time 0.018 seconds

The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression

  • Du, Eun Jo;Ahn, Tae Jung;Choi, Min Sung;Kwon, Ilmin;Kim, Hyung-Wook;Kwon, Jae Young;Kang, KyeongJin
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.911-917
    • /
    • 2015
  • Citronellal, a well-known plant-derived mosquito repellent, was previously reported to repel Drosophila melanogaster via olfactory pathways involving but not directly activating Transient Receptor Potential Ankyrin 1 (TRPA1). Here, we show that citronellal is a direct agonist for Drosophila and human TRPA1s (dTRPA1 and hTRPA1) as well as Anopheles gambiae TRPA1 (agTRPA1). Citronellal-induced activity is isoform-dependent for Drosophila and Anopheles gambiae TRPA1s. The recently identified dTRPA1(A) and ag-TRPA1(A) isoforms showed citronellal-provoked currents with EC50s of $1.0{\pm}0.2$ and $0.1{\pm}0.03mM$, respectively, in Xenopus oocytes, while the sensitivities of TRPA1(B)s were much inferior to those of TRPA1(A)s. Citronellal dramatically enhanced the feeding-inhibitory effect of the TRPA1 agonist N-methylmaleimide (NMM) in Drosophila at an NMM concentration that barely repels flies. Thus, citronellal can promote feeding deterrence of fruit flies through direct action on gustatory dTRPA1, revealing the first isoform-specific function for TRPA1(A).

Activation of the Chemosensory Ion Channels TRPA1 and TRPV1 by Hydroalcohol Extract of Kalopanax pictus Leaves

  • Son, Hee Jin;Kim, Yiseul;Misaka, Takumi;Noh, Bong Soo;Rhyu, Mee-Ra
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.550-555
    • /
    • 2012
  • TRPA1 and TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels. TRPA1 and TRPV1 are often co-expressed in sensory neurons and play an important role in somatosense such as cold, pain, and irritants. The first leaves of Kalopanax pictus Nakai (Araliaceae) have long been used as a culinary ingredient in Korea because of their unique chemesthetic flavor. In this study, we observed the intracellular $Ca^{2+}$ response to cultured cells expressing human TRPA1 (hTRPA1) and human TRPV1 (hTRPV1) by $Ca^{2+}$ imaging analysis to investigate the ability of the first leaves of K. pictus to activate the hTRPA1 and hTRPV1. An 80% ethanol extract of K. pictus (KPEx) increased intracellular $Ca^{2+}$ influx in a response time- and concentration-dependent manner via either hTRPA1 or hTRPV1. KPEx-induced response to hTRPA1 was markedly attenuated by ruthenium red, a general blocker of TRP channels, and HC-030031, a specific antagonist of TRPA1. In addition, the intracellular $Ca^{2+}$ influx attained with KPEx to hTRPV1 was mostly blocked by ruthenium red, and capsazepine, a specific antagonist of TRPV1. These results indicate that KPEx selectively activates both hTRPA1 and hTRPV1, which may provide evidence that the first leaves of K. pictus primarily activate TRPA1 and TRPV1 to induce their unique chemesthetic sense.

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim;Minwoo Kim;Yongwoo Jang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.192-204
    • /
    • 2024
  • Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.