Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.6.550

Activation of the Chemosensory Ion Channels TRPA1 and TRPV1 by Hydroalcohol Extract of Kalopanax pictus Leaves  

Son, Hee Jin (Division of Metabolism and Functionality Research, Korea Food Research Institute)
Kim, Yiseul (Division of Metabolism and Functionality Research, Korea Food Research Institute)
Misaka, Takumi (Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo)
Noh, Bong Soo (Department of Food Science and Technology, Seoul Women's University)
Rhyu, Mee-Ra (Division of Metabolism and Functionality Research, Korea Food Research Institute)
Publication Information
Biomolecules & Therapeutics / v.20, no.6, 2012 , pp. 550-555 More about this Journal
Abstract
TRPA1 and TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels. TRPA1 and TRPV1 are often co-expressed in sensory neurons and play an important role in somatosense such as cold, pain, and irritants. The first leaves of Kalopanax pictus Nakai (Araliaceae) have long been used as a culinary ingredient in Korea because of their unique chemesthetic flavor. In this study, we observed the intracellular $Ca^{2+}$ response to cultured cells expressing human TRPA1 (hTRPA1) and human TRPV1 (hTRPV1) by $Ca^{2+}$ imaging analysis to investigate the ability of the first leaves of K. pictus to activate the hTRPA1 and hTRPV1. An 80% ethanol extract of K. pictus (KPEx) increased intracellular $Ca^{2+}$ influx in a response time- and concentration-dependent manner via either hTRPA1 or hTRPV1. KPEx-induced response to hTRPA1 was markedly attenuated by ruthenium red, a general blocker of TRP channels, and HC-030031, a specific antagonist of TRPA1. In addition, the intracellular $Ca^{2+}$ influx attained with KPEx to hTRPV1 was mostly blocked by ruthenium red, and capsazepine, a specific antagonist of TRPV1. These results indicate that KPEx selectively activates both hTRPA1 and hTRPV1, which may provide evidence that the first leaves of K. pictus primarily activate TRPA1 and TRPV1 to induce their unique chemesthetic sense.
Keywords
Kalopanax pictus; TRPA1; TRPV1; $Ca^{2+}$ imaging; Chemesthesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J. and Patapoutian, A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857.   DOI   ScienceOn
2 Bassoli, A., Borgonovo, G., Caimi, S., Scaglioni, L., Morini, G., Moriello, A. S., Di Marzo, V. and De Petrocellis, L. (2009) Taste-guided identification of high potency TRPA1 agonists from Perilla frutescens. Bioorg. Med. Chem. 17, 1636-1639.   DOI
3 Bautista, D. M., Movahed, P., Hinman, A., Axelsson, H. E., Sterner, O., Högestätt, E. D., Julius, D., Jordt, S. E. and Zygmunt, P. M. (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. USA 102, 12248-12252.   DOI   ScienceOn
4 Bessac, B. F. and Jordt, S. E. (2008) Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 23, 360-367.   DOI
5 Bevan, S. and Andersson, D. A. (2009) TRP channel antagonists for pain-opportunities beyond TRPV1. Curr. Opin. Investig. Drugs 10, 655-663.
6 Capasso, R., Aviello, G., Romano, B., Borrelli, F., De Petrocellis, L., Di Marzo, V. and Izzo, A. A. (2012) Modulation of mouse gastrointestinal motility by allyl isothiocyanate, a constituent of cruciferous vegetables (Brassicaceae): evidence for TRPA1-independent effects. Br. J. Pharmacol. 165, 1966-1977.   DOI
7 Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. and Julius, D. (1997) The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389, 816-824.   DOI   ScienceOn
8 Choi, J., Huh, K., Lim, S. H., Lee, K. T., Park, H. J. and Han, Y. N. (2002) Antinociceptive and anti-rheumatoidal effects of Kalopanax pictus extract and its saponin components in experimental animals. J. Ethnopharmacol. 79, 199-204.   DOI   ScienceOn
9 Damann, N., Voets, T. and Nilius, B. (2008) TRPs in our senses. Curr. Biol. 18, R880-889.   DOI
10 Dedov, V. N., Tran, V. H., Duke, C. C., Connor, M., Christie, M. J., Mandadi, S. and Roufogalis, B. D. (2002) Gingerols: a novel class of vanilloid receptor (VR1) agonists. Br. J. Pharmacol. 137, 793-798.   DOI
11 Everaerts, W., Gees, M., Alpizar, Y. A., Farre, R., Leten, C., Apetrei, A., Dewachter, I., van Leuven, F., Vennekens, R., De Ridder, D., Nilius, B., Voets, T. and Talavera, K. (2011) The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr. Biol. 21, 316-321.   DOI
12 Gerhold, K. A. and Bautista, D. M. (2009) Molecular and cellular mechanisms of trigeminal chemosensation. Ann. N. Y. Acad. Sci. 1170, 184-189.   DOI
13 Hata, T., Tazawa, S., Ohta, S., Rhyu, M. R., Misaka, T. and Ichihara, K. (2012) Artepillin C, a major ingredient of Brazilian propolis, induces a pungent taste by activating TRPA1 channels. PLoS ONE 7, e48072.   DOI
14 Lee, E. B., Li, D. W., Hyun, J. E., Kim, I. H. and Whang, W. K. (2001) Anti-inflammatory activity of methanol extract of Kalopanax pictus bark and its fractions. J. Ethnopharmacol. 77, 197-201.   DOI   ScienceOn
15 Jordt, S. E., Bautista, D. M., Chuang, H. H., McKemy, D. D. and Zygmunt, P. M., Högestätt, E. D., Meng, I. D. and Julius, D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260-265.   DOI   ScienceOn
16 Jung, S. Y., Choi, S., Ko, Y. S., Park, C. S., Oh, S., Koh, S. R., Oh, U., Oh, J. W., Rhee, M. H. and Nah, S. Y. (2001) Effects of ginsenosides on vanilloid receptor (VR1) channels expressed in Xenopus oocytes. Mol. Cells 12, 342-346.   과학기술학회마을
17 Koizumi, K., Iwasaki, Y., Narukawa, M., Iitsuka, Y., Fukao, T., Seki, T., Ariga, T. and Watanabe, T. (2009) Diallyl sulfides in garlic activate both TRPA1 and TRPV1. Biochem. Biophys. Res. Commun. 382, 545-548.   DOI
18 Macpherson, L. J., Dubin, A. E., Evans, M. J., Marr, F., Schultz, P. G., Cravatt, B. F. and Patapoutian, A. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541-545.   DOI
19 Macpherson, L. J., Geierstanger, B. H., Viswanath, V., Bandell, M., Eid, S. R., Hwang, S. and Patapoutian, A. (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929-934.   DOI   ScienceOn
20 Nam, J. H., Jung, H. J., Choi, J. W., Park, K. K., Kim, W. B., Lee, M.S. and Park, H. J. (2006) Monthly variation of the Kalopanaxsaponin content in the leaves of Kalopanax pictus. Kor. J. Pharmacogn. 37, 184-189.   과학기술학회마을
21 Riera, C. E., Menozzi-Smarrito, C., Affolter, M., Michlig, S., Munari, C., Robert, F., Vogel, H., Simon, S. A. and le Coutre, J. (2009) Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. Br. J. Pharmacol. 157, 1398-1409.   DOI
22 Zhong, J., Pollastro, F., Prenen, J., Zhu, Z., Appendino, G. and Nilus, B. (2011) Ligustilide: a novel TRPA1 modulator. Pflugers Arch 462, 841-849.   DOI
23 Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., Hricik,T. R., et al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829.   DOI   ScienceOn
24 Tominaga, M. (2007) Nociception and TRP channels. Handb. Exp. Pharmacol. 179, 489-505.   DOI
25 Yeon, K. Y., Kim, S. A., Kim, Y. H., Lee, M. K., Ahn, D. K., Kim, H. J., Kim, J. S., Jung, S. J. and Oh, S. B. (2010) Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J. Dent. Res. 89, 170-174.   DOI