• Title/Summary/Keyword: human HepG2 cells

Search Result 440, Processing Time 0.029 seconds

Effects of Citrus Flavonoid, Hesperidin and Naringin on Lipid Metabolism in HepG2 Cells (간배양 HepG2 세포의 지질대사에 미치는 Hesperidin 및 Naringin의 영향)

  • 김범규;차재영;조영수
    • Journal of Life Science
    • /
    • v.9 no.4
    • /
    • pp.382-388
    • /
    • 1999
  • The effects of citrus flavonoids, hesperidin and naringin, on the lipid metabolism were investigated in cultured human hepatocyte HePG2 cells. HepG2 cells were cultured for 6 h and 24 h to the control medium or the media containing hespridin and narigin, which concentrations were 0.5 and 5.0 mg/$m\ell$. There were no significant effects on cell proliferation and cellular protein content, except for increased in these parameters by adding both citrus flavonoids (0.5 mg/$m\ell$). The cellular content of triacylglycerol after 6 h incubation with 0.5 mg/$m\ell$ hesperidin and naringin was markedly increased, and after 24 h incubation that was decreased in both citrus flavonoids supplementation. The supplementation of 5.0 mg/$m\ell$ hesperidin caused a marked decrease in the cellular cholesterol content following 6 h incubation, and that was also reduced markdly, in a dose-dependent manner, during incubation for 24 h. However, there was no significant difference in the cellular cholesterol content in medium supplemented with naringin. The effect of hesperidin and naringin on acyl-CoA: cholesterol acyltransferase (ACAT) activity was studied in vivo and in vitro. The data confirmed that hesperidin inhibit ACAT activity in vivo and in vitro, whereas naringin had no such effect on ACAT activity in vivo but not in vitro. The present study suggests that hesperidin reduces the cellular triacyglycerol and cholesterol contents in human hepatocyte HepG2 cells.

  • PDF

Apoptotic Effects of Sipimikwanjung-tang of Sasang Constitutional Medicine in Human Hepatoblastoma Cells

  • Song Seung-Yun;Bae Young-Chun;Lee Sang-Min;Kim Kyung-Yo;Joo Jong-Cheon;Ko Ki-Duk;Park Soo-Jeong;Lee Kyung-Sung;Choi Yong-Seok;Kim Jong-Yeol
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.46-58
    • /
    • 2005
  • Objective : This study on Sipimikwanjung-tang was undertaken to evaluate its antioxidant capacities and antiperoxidation activities in rat liver tissues. Sipimikwanjung-tang which has been one of the prescriptions in sasang constitutional medicine is usually applied for the therapy of various liver diseases. It is elucidated that Sipimikwanjung-tang has antioxidants on liver tissue of rat and the cytotoxic effects on human hepatoblastoma Hep G2 cells. Methods: Sipimikwanjung-tang extract in antioxidant effects of Hep G2 cells is evaluated by MTT assay, DAPI staining, DNA fragmentation assays and FACS can analysis. Results: Sipimikwanjung-tang induced apoptosis in Hep G2 cells, and induced G1 and G2M arrest of the cell cycle as well as a significant increase in PARP and caspase-3 activity. It induced an increase in $H_2O_2$ generation and the subsequent $NF-{\kappa}B$ activation and also induced cell apoptosis through the caspase-3-dependent pathways in the low concentration of Sipimikwanjung-tang extracts. However, the high dose of Sipimikwanjung-tang extract in Hep G2 cells inhibited $TGF-{\beta}l-induced$ apoptosis via increase in cellular $H_2O_2$, formation and $NF-{\kappa}B$ activation in human hepatoblastoma Hep G2 cells. Conclusion: From this study, the possibility that Sipimikwanjung-tang extracts apply to antioxidant and apoptotic treatment of disease is revealed.

  • PDF

Induction of Apoptosis and Its Mechanism by Siegesbeckia Glabrescens in HepG2 cells (간암 세포주에서의 희렴의 Apoptosis 유도와 기전)

  • Kim, Yoon-Tae;Lee, Heon-Jae;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.640-646
    • /
    • 2005
  • This study was performed for the investigation of anticancer effects of Siegesbeckia glabrescens(SG) on HepG2 cells, a human hepatoma cell line. In the previous study, we examined the involvement of nitric oxide (NO) on anti-proliferative and apoptotic efficacy of SG in vascular smooth muscle cells. The possible mechanism of the apoptotic effects of SG was investigated in HepG2 cells. SG showed potent cytotoxic activity in HepG2 but not chang cells, liver normal cells. SG treatment caused morphological change such as cell shrinkage, nuclei condensation and cell blebbing in HepG2 cells. SG also increased the nitrite production of HepG2 cells in a dose-dependent manner. Furthermore, L-NNA treatment inhibited the anti-proliferative effect of SG. From RT-PCR, SG decreased Bcl-2 but no affected on Bax. Western blot for procaspase-3 and COX-2 showed that degradation of procaspase-3 protein level or inhibition of COX-2 protein expression by SG treatment. In addition, the apoptotic effect of SG was also demonstrated by DNA laddering. In conclusion, SG-induced HepG2 cells death can occur via apoptosis which was dose-dependent, and associated with apoptosis-related Bcl-2/Bax gene expressions, COX-2 inhibition, caspase-3 activation and NO pathway. These results suggest that SG is potentially useful as a chemotherapeutic/chemopreventive agent in hepatocellular carcinoma.

Effect of Diallyl Disulfide on Heme Oxygenase-1 Expression in Human Hepatoma Cell Line HepG2 (인간 간암세포주 HepG2에서 heme oxygenase-1 발현에 대한 diallyl disulfide의 효과)

  • Kim, Kang-Mi;Lee, Sang-Kwon;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.1046-1051
    • /
    • 2011
  • Diallyl disulfide (DADS), the most prevalent oil-soluble organosulfur compound in garlic, is known to have diverse biological activities, including anticarcinogenic, antiatherosclerotic, antiinflammatory, and antioxidant actions. In this study, we investigated the effect of DADS on the expression of heme oxygenase-1 (HO-1) in human liver hepatoma cell line HepG2. Treatment of HepG2 cells by DADS evoked a dose-dependent growth inhibition without significant toxicity to the cells, and also induced the expression of transcription factor Nrf2. However, DADS did not have any enhancing effect on transcription and translation of HO-1 expression in HepG2 cells. In addition, DADS efficiently blocked protein synthesis of HO-1 in HepG2 cells stimulated by CoPP or hemin. But, DADS did not decrease the content of transcripts of HO-1 gene stimulated by CoPP, with accumulation of Nrf2 and small Maf in the nucleus. Based on these results, we conclude that DADS inhibits HO-1 expression by modulation of translational level of CoPP or hemin-induced HO-1 expression in HepG2 cells.

Effects of Cholic Acid/CDCA and FGF-19 on the Protein Levels of the Endogenous Small Heterodimer Partner (SHP) in the Mouse Liver and HepG2 Cells (생쥐의 간과 HepG2 세포에 있어서 내인성 small heterodimer partner (SHP)의 단백질 수준에 미치는 cholic acid/CDCA 및 FGF-19의 효과)

  • Min, Gye-Sik
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1731-1736
    • /
    • 2009
  • Recent studies determined that a chronic western-style diet increased the endogenous small heterodimer partner (SHP) protein levels in mice. In experiments with cell cultures, chenodeoxy cholic acid (CDCA) treatment increased endogenous SHP protein levels and reduced the degradation rate of exogenously expressed flag-SHP levels in the human hepatoma cell line, HepG2 cells. In addition, bile acid-induced intestinal fibroblast growth factor-19 (FGF-19) increased the half-life of the exogenously expressed SHP when HepG2 cells were transfected with ad-flag-SHP. However, both the expression level and the degradation rate of the endogenous SHP in response to cholic acid and FGF-19 have not been well understood, either in mice or in cultured HepG2 cells. This study examined the effects of cholic acid treatment on the endogenous SHP protein levels in mice and the effects of FGF-19 on the degradation rate of the endogenous SHP protein in HepG2 cells. Mice fed 0.5% cholic acid in normal chow showed an increase in endogenous SHP protein levels during both 12 hr and 24 hr treatment periods as compared to control mice fed only normal chow. In cultured HepG2 cells, treatment with CDCA did not noticeably change the rate of degradation in the endogenous SHP protein from cells not treated with CDCA. Although consistent with the previous studies on the exogenous ad-flag-SHP protein, treatment with FGF-19 significantly decreased the degradation rate of the endogenous SHP protein when HepG2 cells were treated with cyclohexamide. These results suggest that both bile acids and FGF-19 increase the endogenous SHP protein levels in mouse liver and HepG2 cells.

The effects of Somok on apoptosis of human liver cancer HepG2 cell. (소목(蘇木)이 사람 간암 세포주인 HepG2의 세포사멸에 미치는 영향과 그 경로)

  • Kim, Pan-Jun;Yun, Hyun-Joung;Lee, Young-Tae;Seo, Kyo-Soo;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The purpose of this study was to investigate the anticancer effects of Caesalpiniae Lignum (Somok) on HepG2 cells, a human liver cancer cell line. To study the cytotoxic effect of Caesalpiniae Lignum methanol extract (CL-MeOH) on HepG2 cells, the cells were treated with various concentrations of CL-MeOH and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. CL-MeOH reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of CL-MeOH. The activation of caspase 3 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, was examined by western blot analysis. CL-MeOH decreased procaspase 3 level in a dose-dependent manner and induced the clevage of PARP at concentration> $200{\mu}/ml$. Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. CL-MeOH-induced MAPK activation was examined by Western blot for phosphorylated ERK, p38 and JNK. CL-MeOH significantly increased p38 phosphorylation and JNK phosphorylation in a dose-dependent manner. Inhibition of p38 function using the selective inhibitor SB20358O results in inhibition of apoptosis by CL-MeOH. These results suggest that CL-MeOH-induced apoptosis is MAP kinase-dependent apoptoric pathway. These results suggest that CL-MeOH is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Antiproliferative Effect and Apoptotic Mechanism of Extract of Corydalis Yanhusuo on Human Hepatocarcinoma Cells (현호색(玄胡索)이 인체간암세포 증식억제 및 apoptosis 유발에 미치는 영향)

  • Oh, Myun- Taek;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1437-1449
    • /
    • 2007
  • In this study, the effect of extract of Corydalis yanhusuo (ECT) used in Oriental medicine therapy was investigated on the cell growth and apoptosis of HepG2 human hepatoma cells. It was found that ECT could inhibit the cell growth effectively in a dose-dependent manner, which was associated with morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. And we observed the effects of ECT on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by DNA flow cytometric analysis. Apoptosis of HepG2 cells by ECT was associated with a down-regulation of anti apoptotic Bcl-2 expression, inhibitor of apoptosis proteins (IAPs) expression and proteolytic activation of caspase-3 and caspase-9. However, ECT did not affect the pro-apoptotic Bax expression and activity of caspase-8. ECT treatment also concomitant degradation and /or inhibition of poly (ADP-ribose) polymerase (PARP), phospholipase C-1 ($PLC{\gamma}1$). Furthermore, ECT treatment caused a dose-dependent inhibition of iNOS and cyclooxygenase-2 (Cox-2). Additionally ECT have been implicated in the regulation of telomerase expression. ECT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of HepG2 cells. Taken together, these findings suggest that ECT may be a potential chemotherapeutic agent for the control of HepG2 human hepatoma cells.

Enhancement of Anticancer Activity by Combination of Garlic (Allium sativum) Extract and Vitamin C (마늘 추출물과 비타민 C 혼합물에 의한 암세포증식억제의 상승 효과)

  • 황우익;손향은;이지영;김동청
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.372-376
    • /
    • 2001
  • The effect of garlic extract and vitamin C mixture on the various cancer cell lines in vitro and in vivo have been examined. Proliferation of human colon cancer (HT-29), human rectal cancer (HRT-18) and human hepatoma (HepG2) cells was inhibited by garlic extract and vitamin C, respectively. Based on the cytotoxic activity, mixture of garlic extract and vitamin C was demonstrated to possess a synergistic growth inhibition on HT-29, HRT-18 and HepG2 cancer cells. Mixture of garlic extract and vitamin C significantly arrested G2/M phase cells in the HepG2 cell cycle. Oral administration of mixture of garlic extract and vitamin C to sarcoma-180 tumor-bearing mice prolonged survival time compared to that of control group. These results suggested that addition of vitamin C enhances anticancer activity of garlic extract in vitro, and mixture of garlic extract and vitamin C has antitumor effect in vivo.

  • PDF

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.

Asiatic Acid Promotes p21WAF1/CIP1 Protein Stability through Attenuation of NDR1/2 Dependent Phosphorylation of p21WAF1/CIP1 in HepG2 Human Hepatoma Cells

  • Chen, Jin-Yuan;Xu, Qing-Wen;Xu, Hong;Huang, Zong-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.963-967
    • /
    • 2014
  • Previous studies have suggested anti-tumor effects of asiatic acid in some human cancer cell lines. This agent is reported to increase the levels of $p21^{WAF1/CIP1}$ in human breast cancer cell lines. However, the molecular mechanisms have not been established. Here we report that asiatic acid up-regulates $p21^{WAF1/CIP1}$ protein expression but not the level of $p21^{WAF1/CIP1}$ mRNA in HepG2 human hepatoma cells. Furthermore, we found that the asiatic acid induced increase of $p21^{WAF1/CIP1}$ protein was associated with decreased phosphorylation (ser-146) of $p21^{WAF1/CIP1}$. Knockdown of NDR1/2 kinase, which directly phosphorylates $p21^{WAF1/CIP1}$ protein at ser-146 and enhances its proteasomal degradation, increased the levels of $p21^{WAF1/CIP1}$ protein and eliminated the regulation of $p21^{WAF1/CIP1}$ stability by asiatic acid. At the same time, the expression of NDR1/2 kinase decreased during treatment with asiatic acid in HepG2 cells. Moreover, asiatic acid inhibited the proliferation of HepG2 cells, this being attenuated by knockdown of $p21^{WAF1/CIP1}$. In conclusion, we propose that asiatic acid inhibits the expression NDR1/2 kinase and promotes the stability of $p21^{WAF1/CIP1}$ protein through attenuating NDR1/2 dependent phosphorylation of $p21^{WAF1/CIP1}$ in HepG2 cells.