• Title/Summary/Keyword: hull

Search Result 2,687, Processing Time 0.028 seconds

Effect of food waste properties on methane production (음식물쓰레기의 특성이 메탄생성량에 미치는 영향분석)

  • Lee, Soo Gwan;Choi, Hong Lim;Lee, Joon Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.11-22
    • /
    • 2014
  • The buffer capacity of food waste lowers during the collecting and transportation period. Food waste usually shows deficiency of micro nutrients especially molybdenum(Mo) and cobalt(Co). Therefore, food waste can be considered as a good mixture of livestock waste to enhance methane production. The objective of this study was to investigate the correlation between properties of substrates (local food waste and livestock manure) and methane yields for successive anaerobic fermentation process and its stable management. Food wastes were taken at an intermediate storage or treatment system provided by eight local authorities (Gangnam, Gangdong, Gwanak, Guro, Dongjak, Songpa, Yeongdeungpo, and Younsan) in Seoul. The solid content and potential methane yield of food wastes were average of 16% and $446.6STP-m{\ell}/g-VS$ (range from 334.8 to $567.5STP-m{\ell}/g-VS$) respectively. As for the beef cattle manure, the solid content and potential methane yield had an average of 26% and $280.6STP-m{\ell}/g-VS$ respectively. Potential methane yield had a positive correlation with fat content, and hydrogen content and a negative correlation with carbohydrate content ($r^2>0.8$). Therefore, the potential methane yield can be predicted based on the substrate characterization results with reasonable accuracy. Further research may be needed to investigate the relation of the properties of the mixture substrate and methane production rate. The mixtures may include food waste, livestock waste, and bulking agents (saw dust, rice hull, or agricultural byproducts etc.) to determine best combination of these substrates for maximum methane production rate.

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Reliability Analysis of Ship Deck Structure (선체상갑판의 신뢰성해석)

  • S.J.,Yim;Y.S.,Yang;K.T.,Chung;C.W.,Kim;Y.S.,Suh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.9-20
    • /
    • 1989
  • It is important to enhance the safety of ship structures as much as possible in order to prevent the disastrous collapse of structures. In fact, the strength problem of structures is closely related with the safety problem of structures. Recently, the direct calculation method using a rational approach based on the first principle is implemented into the structural design process instead of adopting empirical approach based on the rules. The structural designer have shown increased concern with the problem of adequacy of conventional design method based on the safety factor since it does not fully take into account some degree of variability of the applied loads on and the strength of ship structures. To deal with the analysis of structures effectively, it is necessary to have three stages being equally treated. The first one is load analysis, second one response analysis, third one safety analysis. For marine structures, most of research effort has been however put into the first and second stages. The third stage is normally done by simple procedures. Hence, the various probabilistic methods are compared in order to establish the reliability analysis techniques for ship structures. As a result, the advanced level 2 method is selected as a most effective and accurate reliability method. The validity of this method is further demonstrated by comparing the results with the conventional method for the problem of the longitudinal strength of hull girder of Ro-Ro ship.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel (캐비테이션 터널에서의 반류분포 재현에 미치는 유동조절체의 영향)

  • Jin-Tae Lee;Young-Gi Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Flow control devices, such as flow liners, are frequently introduced hi a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section of a cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the after body of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary layer calculation should be incorporated in order to correlate the calculated wake distribution with tole measured one.

  • PDF

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

Strength Analysis for the Plate System of the Mark III Cargo Containment (Mark III 방열 판 구조물의 파손 강도 평가에 관한 연구)

  • Jeong, Han-Koo;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.625-633
    • /
    • 2014
  • Mark III CCS plate is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex and reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated anisotropic structure. Commercially available general purpose finite element analysis programs such as MSC PATRAN and MARC are used to develop the finite element (FE) model of the Mark III CCS plate. Because of the characteristics of LNG cargo that the Mark III CCS plate deals with, it is subjected to a wide range of temperature variations, i.e. about $-163^{\circ}C$ to $20^{\circ}C$. Different material properties of the Mark III CCS plate at these temperature levels are considered in the FE model. Using the developed FE model, strength assessment procedure is developed incorporating various anisotropic failure criteria such as Hashin, Hill, Hoffman, Maximum stress and Tsai-Wu. The strength assessment is performed within the initial failure state of the Mark III CCS plate and, as a result, failure details such as failure locations and loads are identified.

Ultimate Strength Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 최종강도거동 해석)

  • Park Jo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.147-154
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.

Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD (격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향)

  • Park, Dong-Woo;Yoon, Hyun-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • The current work investigated the variation of numerical solutions according to the grid number, the distance of the first grid point off the ship surface, turbulence modeling and discretization. The subject vessel is KVLCC. A commercial code, Gridgen V15 and FLUENT were used the generation of the ship hull surface and spatial system and flow computation. The first part of examination, the effect of solutions were accessed depending on the grid number, turbulence modeling and discretization. The second part was focus on the suitable selection of the distance of the first grid point off the ship surface: $Y_P+$. When grid number and discretization were fixed the same value, the friction resistance showed differences within 1 % but the pressure resistance showed big differences 9 % depending on the turbulence modeling. When $Y_P+$ were set 30 and 50 for the same discretization, friction resistance showed almost same results within 1 % according to the turbulence modeling. However, when $Y_P+$ were fixed 100, friction resistance showed more differences of 3 % compared to $Y_P+$ of 30 and 50. Whereas pressure resistance showed big differences of 10 % regardless of turbulence modeling. When turbulence modeling and discretization were set the same value, friction, pressure and total resistance showed almost same result within 0.3 % depending on the grid number. Lastly, When turbulence modeling and discretization were fixed the same value, the friction resistance showed differences within 5~8 % but the pressure resistance showed small differences depending on the $Y_P+$.

Secondary Buckling Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 2차좌굴거동 해석)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.67-74
    • /
    • 2006
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion rf the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design rf ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated secondary buckling behavior through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF