• Title/Summary/Keyword: hsla steel

Search Result 50, Processing Time 0.026 seconds

A characteristics of base metal and weldment of 100ksi class high strength steel (100ksi급 고장력강의 모재 및 용접부 특성)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.134-144
    • /
    • 1996
  • A study was performed to investigate the properties of base metal and weldment for two HSLA steels and one HY-100 steel. Tensile, yield strength and elongation of HSLA-A steel were superior to those of HY-100 steel and yield ratios in HSLA-A and HSLA-B steels were higher than HY-100 steel owing to the precipitation of $\varepsilon$-Cu phase. The impact energy of HSLA-A steel was greater at all aging temperatures than that of HY-100 steel. HSLA-A and HY-100 steels had low impact transition temperature of about -l$25^{\circ}C$ and high upper shelf energy, The peak hardness of weldment in HSLA-A, HSLA-B and HY-100 steels were Hv 299, Hv 275 and Hv 441, respectively. The hardenability of HY-100 steel was largest due to the higher amount of carbon. The y-groove test showed that HSLA steels had superior resistance to cold cracking. Toughness of weld joint at the F. L. and F. L. +1mm in HSLA-A was almost the same as HY-100, but those at F. L.+3mm and F. L.+5mm was greater in HSLA-A steel.

  • PDF

A Study on the Stress Relief Cracking of HSLA-100 and HY-100 steels (HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.48-57
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied by impact test, optical microscopy and scanning electron microscopy. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at $660^{\circ}C$ for HY-100 steel and thermal cycled from $1350^{\circ}C$ to $25^{\circ}C$ with a cooling time of $\Delta$t_${800^{circ}C/500^{circ}C}$=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of $570~620^{\circ}C$. The time to failure$(t_f)$ at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. By the precipitation of $\varepsilon$-Cu phase, the differential strengthening of grain interior relative to grain boundary may be greater in the Cu-bearing HSLA-100 steel than in HY-100 steel. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility. The activation energies for SRC of HSLA-100 steel are 103.9kcal/mal for 387MPa and 87.6kcal/mol for 437MPa and that of HY-100 steel is 129.2kcal/mol for 437MPa.

  • PDF

Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density (전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측)

  • Kim, Jae-Hoon;Kim, Duck-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

A Study on the Stress Relief Cracking of HSLA-100 and HY-100 Steels (HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.186-189
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at 66$0^{\circ}C$ for HY-100 steel and thermal cycled from 135$0^{\circ}C$ In $25^{\circ}C$ with a cooling time of $\Delta$ $t_{800^{\circ}50}$ $0^{\circ}C$/=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of 570~62$0^{\circ}C$. The time to failure( $t_{f}$) at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility.y.

  • PDF

Effects of Additional Elements of the Mechanical Properties of HSLA Cast Steels (HSLA 주강의 기계적 성질에 미치는 첨가원소의 영향)

  • Park, Jai-Hyun;Kim, In-Bae
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.307-315
    • /
    • 2000
  • The effects of additional elements on the mechanical properties of HSLA cast steels such as hardness, tensile strength and charily impact energy have been investigated. Test results showed the mechanical properties of HSLA cast steels were superior to those of C-Mn cast steels. In case of the HSLA cast steels, HSLA cast steels with all addition of Nb, V, and Ti had more excellent tensile strength than those with individual addition of Nb, V, or Ti. The tensile strengths of HSLA cast steels were increased as the Mo contents were increased from 0.25% to 0.5%. These are attributed to the solution hardening and the change of the precipitation kinetics of NbC due to increased Mo contents. The tensile strength of HSLA cast steel was remarkablely increased as the manganese contents were increased from 0.65% to 1.2% and 1.5%, respectively. However, the optimum composition of HSLA cast steels to obtain the best compromise between tensile strength and charily impact energy compared to C-Mn cast steel was the additions of0.1% C and 1.2% Mn.

  • PDF

The effects of heat-treatment on the microstructure of Cu-containing HSLA steels (Cu를 함유한 저합금 고장력강의 미세 조직에 미치는 열처리의 영향)

  • Park, T.W.;Shim, I.O.;Kim, Y.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.101-112
    • /
    • 1995
  • A study was made to examine the effects of heat-treatment on the microstructures of Cu-bearing HSLA steels. The details of microstructures were studied by using optical microscopy(OM), transmission electron microscopy(TEM) and hardness test. The as-rolled microstructure of HSLA-A consists of ferrite (${\alpha}$) whereas that of HSLA-B consists of needle-shaped phase. The difference in microstructure can be ascribed to the different amount of Ni, Mn, Mo, Cu which affect the hardenability. The austenite grain size is very small up to $1000^{\circ}C$ owing to the Nb-precipitates. As the austenitizing temperature increases above $1000^{\circ}C$, the austenite grain grows rapidly. There are two hardness peaks in the hardness versus temperature curve, at $500^{\circ}C$ and at $675^{\circ}C$ (HSLA-A), $725^{\circ}C$ (HSLA-B). The peak at $500^{\circ}C$ result from the formation of Cu-precipitates and second hardness peak is created due to the formation of M-A constituents. The hardriess decrease in HSLA-B steel with ageing temperature is small because of the higher amounts of Cu than HSLA-A steel. The fine, round ${\varepsilon}$-Cu precipitates grow with ageing temperature and finally transform into rod shape.

  • PDF

A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method (정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF