• Title/Summary/Keyword: housing strength

Search Result 226, Processing Time 0.026 seconds

Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes (각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가)

  • Kim, Ho Soo;Hong, Seok Il;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.253-262
    • /
    • 2005
  • Because the framed wall system using steel studs and runners with square steel tubes as structural elements is reinforced by the horizontal members called runners, it has more strength and load bearing capacity than the steel house wall system. Also, this system improves adiabatic and sound insulation performance by filling up the autoclaved lightweight concrete. We need to evaluate load bearing capacity according to the axial load and lateral load in case this system is applied in the housing system with 3~5 stories through variations in intervals for the runners under the placement effect of autoclaved lightweight concrete. Therefore, this study seeks to analyze axial and shear behavior of the framed wall system according to the placement effect of autoclaved lightweight concrete, and to secure safety for the vertical and lateral loads.

Evaulation of Adiabatic Temperature Rise for Concrete with Blast-Furnace Slag replacement (고로슬래그 미분말 치환율에 따른 콘크리트의 단열온도상승 평가)

  • Kim, Joo Hyung;Lee, Do Heun;Jung, Sang Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Recently, the interest is increasing about the eco-friendly concrete. Accordingly, the blast furnace slag(BFS), a by-product of industry is known for improving the durability through compaction in concrete and is expanding the use. The research about BFS in concrete be accomplished frequently. In this study, we should know the hydration characteristic of BFS concrete the through the adiabatic temperature rise test due to the replacement of a variety of BFS. In addition, we produced the regression analysis factors through the test result and analyzied the effect for the replacement of BFS. According to test results, the compressive strength showed a slight degradation or equal and the the adiabatic temperature rise figure and rising factors are went down for rising replacment of BFS. In the future, the study about the adiabatic temperature rise equation for the various replacement of BFS and binder is considered necessary.

  • PDF

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

Construction Based Model for Assessing Maturity Level of Enterprises

  • Marzouk, Mohamed;Attia, Tarek;El-Bendary, Nasr Eldin
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • Maturity models allow organizations to assess and compare their own practices against best practices or those employed by competitors, with the intention to map out a structured path to improvement. This research explores the aspects of the Maturity Models that are relevant to distinguish them from one to another. The different Project Management maturity models for define maturity differently and measure different things to determine maturity. Because of this, organizations should give careful consideration to select appropriate maturity model. The main reason behind this research lies on the modification to the existing Organizational Project Management Maturity Model (OPM3) by adding four knowledge areas, dedicated to construction industry as best practices. These are Safety, Environment, Financial and Claim Management. This Model contains (Yes/No) questions; all of these questions must be answered before the user reviews the results that describe the overall maturity and areas of strength and weakness of an organization. The research presents the implementation of the proposed Model Construction Enterprises Maturity Model (CEM2). All the components of the developed Model have been implemented in Microsoft Access. CEM2 helps Construction Enterprises to assess their Maturity Level and know Areas of Weaknesses for future improvement. The easy to use Yes/No user interfaces help enterprises' employees to assess the maturity level of their enterprises. The Model maintains users' responses in its database; as such, many employees from different enterprise divisions can be involved during assessment phase in several sessions.

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

Vacuum Pressure Treatment of Water-Soluble Melamine Resin Impregnation for Improvement of Mechanical Property, Abrasion Resistance and Incombustibility on Softwood (목재의 기계적 성질, 내마모성 및 난연성 개선을 위한 진공가압 멜라민 수지함침처리)

  • Oh, Seung-Won;Park, Hee Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.792-797
    • /
    • 2015
  • In this study, three softwood species were treated with water-soluble melamine resin by different concentration and treatment time under vacuum pressure for improving mechanical property, abrasion resistance, and incombustibility. After the treatment, a compreg was manufactured and then evaluated on physical properties. Additionally, incombustibility of compreg was determined by comparing with a wood that was treated by spraying a water-soluble fire retardant on surface. As concentration of resin increased, bending strength and Brinell hardness increased as well as abrasion resistance, but there was no correlation on treatment and mechanical properties by treatment time. The wood impregnated by water-soluble melamine resin under vacuum pressure showed better incombustibility than that of a water-soluble fire retardant sprayed wood. Therefore, this treatment could be used for improving incombustibility of wood.

Properties of Fresh Concrete with Recycled Coarse and Fine Aggregates (순환(循環)굵은/잔골재(骨材)를 사용한 굳지 않은 콘크리트의 특성(特性))

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Lee, Do-Heun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • The objective of this study is to investigate the properties of fresh concrete with recycled coarse and fine aggregates. Four different kinds of aggregate with natural, recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of concrete with constant slump is not affected by the replacement ratio of recycled aggregate. Also the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

A Study on the Mobilization of Prisoners in the Late Wartime Period (1943~1945) -with a focus on the National Protection Corps of Prisoners- (태평양전쟁 말기의 수인(囚人) 동원 연구(1943~1945) -형무소 보국대를 중심으로-)

  • Lee, Jong-Min
    • The Journal of Korean-Japanese National Studies
    • /
    • no.33
    • /
    • pp.67-111
    • /
    • 2017
  • This article aims to shed light on the wartime labor mobilization of prisoners on a large scale in/across colonial Korea and beyond during the late wartime period. More specifically, this article reveals the logic and mode of mobilization, and sorts out nationwide mobilization cases in colonial Korea. To this end, this article draws on documents and magazines published by the criminal administration of the Japanese Government-General of Korea, as well as the memoirs of prisoners and prison staff including prison administrators and prison chaplains. With the onset of the wartime system, the labor work in prisons centered on the production of military supplies. In 1943, the labor mobilization began to organize the National Protection Corps and dispatch them to remote workplaces. For example, at the requests of the military, prisoners were selected and sent to Hainan Island, while others were sent to military factories and mining fields in the northern part of the country. The authorities specified and adjusted the criteria for imprisonment based on education, physical strength, and other physical and mental conditions. Unconverted ideological offenders were excluded from the mobilization, and instead put under separate control. In preparation for mobilization, the prisoners trained in military drills, received Japanese language education, and underwent assimilation as imperial subjects through the preaching in prison. In order to induce prisoners to volunteer, a legislation system based on the shortening of the prison terms, including the parole system, was also promoted under the wartime system. As a result, prisoners were forced to work harder and faster even under the lowest of wages, poor food and poor housing conditions, and they also filled vacancies in managerial positions by serving as supervisory assistants. The reward system for them, however, did not function properly towards the end of the war, and the number of escapes and infectious outbreaks, as well as mortality rates rapidly increased under the harsh conditions.

Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam (과열증기 열처리 잣나무재의 물성 평가)

  • Park, Yong-Gun;Eom, Chang-Deuk;Park, Jun-Ho;Chang, Yoon-Seong;Kim, Kwang-Mo;Kang, Chun-Won;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.257-267
    • /
    • 2012
  • In this study, the method for heat treating wood using superheated steam (SHS) was designed and applied. The physical and mechanical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by SHS at $170^{\circ}C$ and 0.4 MPa for 10 hours were compared with those of non-treated and normal heat-treated wood. The amount of adsorbed water and equilibrium moisture content of the SHS treated wood were lower than non-treated wood. On the other hand the compressive strength parallel to grain and the bending strength of SHS treated wood were higher than those of non-treated wood. The hygroscopicity of SHS treated wood was similar to normal heat treated wood at $220^{\circ}C$. Internal checks that often occur during normal heat treatment were not developed at SHS treatment. Also, SHS treatment are effective in control of internal checks occurrence and resin exudation.