• Title/Summary/Keyword: hot-rolling

Search Result 453, Processing Time 0.037 seconds

Study on Precipitation and Mechanical Properties of High Strength Invar Alloy (고강도 인바합금의 석출거동과 기계적 특성 연구)

  • Jeong, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.507-510
    • /
    • 2008
  • Effect of V addition on the precipitation behavior and strength of Fe-36Ni based high strength Invar alloy for power transmission wire was investigated. Fe-36Ni Invar alloy plates were fabricated using conventional ingot casting followed by hot rolling. High strength can be obtained through precipitation hardening and strain hardening by cold rolling. Simulation using FactSage$^{(R)}$ revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, $Mo_{2}C$ and $M_{23}C_6$ carbide. The latter stoichiometric carbide was expected to be formed at relatively lower temperature of $800^{\circ}C$.

Preparation of Aluminum Metalworking Lubricant with Synthesized Malonic Diester (말론산 에스테르 합성 및 이를 이용한 알루미늄 가공용 절삭유의 제조)

  • Lee, Soo;Park, Keun-Ho;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.192-198
    • /
    • 2006
  • To provide an aqueous rust inhibitor for metalworking lubricant having low toxicity and excellent rust resistance, we synthesized diester of malonic acid by three consecutive esterifications with over 98% of conversion. This substituted malonic diester could be used as an additive to mineral oil based metalworking lubricant. These metalworking lubricant compositions were showed excellent rust resistance and suitable for various metals and different metalworking processes including hot rolling and cold rolling of aluminum and aluminum alloys.

Fracture toughness of Low-carbon steel using J-intergral Principle (J-적분을 이용한 저탄소강의 파괴탄성치 결정)

  • ;;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1979
  • The fracture toughness of a hot rolled 100 mm thick SS41 steel plate was investigated for various crack ratios and thichnesses using the method of J-integral. The experiments were performed on an MTS machine and the crack initiation point was detected by using an electricl impedance method. The J-integral computed at the initiation point of the slow stable crack growth was almost constant within the range of crack ratios tested. The fracture toughness thus obtained was $J_{1c}/=27.0kgf/mm$ for specimens having fracture plane parallel to the rolling direction and 35.5kgf/mm for those perpendicular to the rolling direction. The J- integral computed at maximum load point was found to be unsuitable for fracture toughness determination, becaese of large variation depending on the crack ratio and thickness. It was also found that the slow stable crack growth increases as the thickness and/or crack ration of the specimen decrease.

Measurement and prediction of geometric imperfections in structural stainless steel members

  • Cruise, R.B.;Gardner, L.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.63-89
    • /
    • 2006
  • Geometric imperfections have an important influence on the buckling response of structural components. This paper describes an experimental technique for determining imperfections in long (5.7 m) structural members using a series of overlapping measurements. Measurements were performed on 31 austenitic stainless steel sections formed from three different production routes: hot-rolling, cold-rolling and press-braking. Spectral analysis was carried out on the imperfections to obtain information on the periodic nature of the profiles. Two series were used to model the profile firstly the orthogonal cosine and sine functions in a classic Fourier transform and secondly a half sine series. Results were compared to the relevant tolerance standards. Simple predictive tools for both local and global imperfections have been developed to enable representative geometric imperfections to be incorporated into numerical models and design methods.

Temperature Control of a Reheating Furnace using Feedback Linearization and Predictive Control

  • Park, Jae-Hun;Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.1-27
    • /
    • 2001
  • Reheating furnace is a facility of heating up the billet to desired high temperature in the hot charge rolling process and it consists of 3 zones. Temperature control of reheating furnace is essential for successful rolling performance and high productivity. Mostly, temperature control is carried out using PID controller However, the PID control is not effective due to the nonlinearity of the reheating furnace(i.e, presence of the interference of neighboring zones and slow response of temperature etc.). In this paper, feedback linearization method is applied to obtain a linear model of the reheating furnace. Then, controller is designed using simple predictive control method. The effectiveness of this strategy is shown through simulations.

  • PDF

Roll의 수명예측 model 개발

  • 배용환;장삼규;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.306-312
    • /
    • 1992
  • The prevention of roll breakage in hot rolling process is improtant to reduce maintenance cost and production loss. Rolling conditions such as the roll force and torque have been intensively studied to overcome the roll breakage. in the present work, a model for life prediction of work rolls under working condition was developed and discussed. The model consists of stress analysis, crack propagation, wear and fatigue calculation model. Roll life can be predicted by stress, crack depth and fatigue damage calculated from this model. The reliability of stress analysis is backed up by the FEM analysis. From the result of simulation using by pressent model, although the fatigue damage of back up roll reachs 80% of practical limit, that of workroll was less than 40%. In edge section of workroll stress amplification is found by wear and bender effect. We can judge that workroll failures are not due to fatigue damage, crack propagation by bending stress but stress amplification by wear and bender in present working condition.

Technology of profile and shape control in the 6-high Tandem cold Rolling Mill (연속 6단 냉간압연기에서 Profile 및 형상제어 압연기술)

  • 박해두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.142-149
    • /
    • 1999
  • Strip profile and shape control is one of the most important technologies in cold mill, especially for ultra-thin and wide cold strip. The 6-high mills, both of HCMW and UCMW mill, are known to be very effective for the shape controllability. The optimized values of these factors for set-up scheduling were analyzed and found that excellent strip control would be possible by controlling the combination of the influencing factors according to hot coil profile. The important considerations for operation were discussed for individual stand.

  • PDF

Development of Flow Stress equation of High strength steel for automobile using Neural Network and Precision Roll Force Model (신경망 함수를 이용한 자동차강의 변형저항 개발 및 압연하중 예측)

  • Kwak W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.145-152
    • /
    • 2004
  • The flow stress value was calculated by comparing predicted and measured roll force. Using basic on-line roll force model and logged mill data the flow stress equation of high strength steel for automobile was derived. The flow stress equation consists of the flow stress equation of carbon steel and flow stress factor calculated by neural network with input parameters not only carbon contents, strip temperature, strain, and strain rate, but also compositions such as Mn, p, Ti, Nb, and Mo. Using the flow stress equation and basic roll force model, precision roll force model of high strength steel for automobile was derived. Using test set of logged mill data the flow stress equation was verified.

  • PDF

Finite Element Analysis of 3-D Steady State Deformation of Rolls and Strip in 4 High Mill (4High Mill 열간 압연 공정의 3차원 정상상태 유한요소해석)

  • 류성룡;김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.130-133
    • /
    • 1998
  • An integrated finite element computer simulator is presented for the prediction of three dimensional heat transfer and metal flow occurring in the strip, and heat transfer and thermo elastic phenomena occurring in the rolls in 4 high mill hot strip rolling. Basic finite element models are described, with emphasis on combining each model to deal rigorously with the coupled aspect of the thermo-mechanical behaviors of the rols and strip through an iterative solution procedure. A series of process simulation are carried out to investigate the effect of various parameters under the actual process conditions. The results are shown and discussed.

  • PDF

Estimation of thickness variation due to skid mark Using Speedometer (속도계를 이용한 스키드 마크로 인한 두께 변동량 추정)

  • 이영교;조성은;김상우;홍성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.40-40
    • /
    • 2000
  • Generally a RF AGC controls the roll gap using the variation of rolling force caused by the roll eccentricity and the entry thickness of material, but these can not be classified. The Feed- forward AGC method, which controls the next stand roll 9ap by estimation the skid mark of the previous stand output thickness is needed to supplement the shortage of RF AGC. In this paper, an improved filtering method of skid mark which take account of the kinds of materials, the final objective thickness and the roll speed is proposed, In addition, an improved estimation method of control point using the speedometer and looper angle is suggested, Via simulation, the performance improvement of the suggested FF AGC method is verified.

  • PDF