• Title/Summary/Keyword: hot steel surface

Search Result 242, Processing Time 0.023 seconds

Minispangling of a Hot Dip Galvanized Sheet Steel by a Solution Spray Method (수용액 분사법에 의한 용융아연 도금강판의 미니스팡글 형성)

  • 김종상;전선호;박정렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The formation of spangles on a hot dip galvanized sheet steel by spray cooling the molten zinc coating with air, water and 2.0wt% $NH_4H_2PO_4$ solution has been studied performing laboratory experiments, and their coating properties have been evaluated. Minimized spangles were easily formed by mist spraying the solution for 1 second at the low nozzle spray pressure onto the molten zinc at 420~$422^{\circ}C$ because the solute $NH_4H_2PO_4$ in the sprayed solution imparted a highly rapid cooling effect to the coating through its endothermic de-composition reactions and because the decomposed products acted as numerous nucleation sites for the mini-mized spangles on the coating. Good surface appearances sand sound coating properties were obtained on this coating. Only regular spangles were formed on the coating by the forced convective air cooling. At the high nozzle spray pressure, zero spangles were formed on the coating by the pure water spray cooling. However, the coating had a dull and rough surface with craters sand cracks.

  • PDF

Improvement of Coating Adherence of Hot-dip Galvanized Sheet Steels (용융아연 도금강판의 도금밀착성 개선)

  • 김종상;배대철
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 1991
  • In the present work the adhesion failure of a hot-dip galvanized coating has been studied as a function gas composition temperature of strip and of atmospheric gas in furnace. The adhesion failure of the hot-dip galvani-zed coating is classified as three mechanisms : carbon deposition, oxide film formation and alloy layer formation. The adhesion failure due to oxide film formation decreased markedly by increasing the gases temperature of direct fired furnace(DFF) in order to improve the reducing ability of steel strip. Optimum conditions of operating and manufacturing facilities for improving the coating adherence are suggested by analyzing the interface between steel substrate and coating layer.

  • PDF

The Surface Hardening Characteristics of Hot work Tool Steel by CW Nd:YAG Laser (CW Nd:YAG 레이저에 의한 열간금형 공구강의 표면경화특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.219-220
    • /
    • 2006
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 740 Hv when the power, focal position and the travel of laser are 1,095 W, +1mm and 0.3 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

  • PDF

Characteristics of Surface Hardening for Hot Work Tool Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 열간금형 공구강의 표면경화 특성)

  • Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.57-67
    • /
    • 2007
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance fur mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum average hardness is approximatly 780 Hv when the power, focal position and the travel of laser are 1,095 W, 0mm and 0.3 m/min, respectively. In samples treated with lower scanning speeds, some small carbide particles appear in the interdendritic regions. This region contains fine martensite and carbide in proportions which depend on the local thermal cycle.

Thermal performance prediction of amorphous steel fibers mixed into the floor heating system (비정질 강섬유 혼입 바닥난방시스템의 열성능 평가)

  • Cho, Hyun;Pang, Seung-Ki
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • The thermal performance of amorphous steel fibers mixed floor heating system was evaluated. Analysis of results, depending on the hot water supply temperature changes, the average temperature of the bottom of the hot water supply temperature is an amorphous steel fiber floor heating system is about 2~4% higher. The average temperature of the floor surface to 1.5m air amorphous steel fiber system is 1~2% higher. The amount of heat supplied to indoor air (1.5m) from the bottom surface of amorphous steel fiber floor heating system is about 7~8% higher

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.