• Title/Summary/Keyword: hot start emission

Search Result 25, Processing Time 0.024 seconds

Emission Characteristics for the MTBE Gasoline Engine (MTBE 가솔린기관의 배기가스 특성에 관한 연구)

  • 노병준;이삼구;김규철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.32-37
    • /
    • 2001
  • This article is to provide reasonably accurate vehicle emission estimates for the four sampled fuels which are commercially available across the nation. Emission quantities are obtained by testing a vehicle on a chassis dynamometer and capturing a sample of the emissions from the tailpipe in vehicle. The vehicle is driven following a particular pattern of idle, acceleration, cruise, and deceleration. Shown here is the trace of the test cycle known as the CVS-75 Mode which is used to certify the emission performance standards. The mode of CVS-75 consists of a cold start cycle, a hot stabilized cycle, and a hot start cycle. Emissions for the pollutants are measured in vehicle testing. These are carbon monoxide (CO), oxides of nitrogen (NOx), and total hydrocarbon (THC). The test results summarized in this report indicate that the differences for the amount of emission are quantitatively minimal.

  • PDF

Estimation of the Emission form Passenger Car Considering Cold Start and Evaporative VOC Emission in the Capital Area (수도권지역 승용차에 의한 Cold Start와 Evaporative VOC를 고려한 배출량 추정)

  • 장영기;최상진;홍영실
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.157-158
    • /
    • 2003
  • 급증하는 자동차 수요로 인해 발생되는 배출량 증가는 자동차 운행의 특성상 대도시 대기오염의 주원인으로 작용하고 있다. 자동차 배출오염물질의 배출량 추정 및 관리에 있어 연간 배출량 뿐만 아니라 월별 기온변화에 따른 배출량의 시간분포 또한 고려되어야 한다. 본 연구에서는 Hot emission에 부가되는 Cold start emission과 Evaporative VOC emission의 산정에 있어서 차종/차령에 대해서 월별 배출량을 추정하여 보았다. (중략)

  • PDF

Development of O/D Based Mobile Emission Estimation Model (기종점 기반의 도로이동오염원 배출량 추정모형)

  • Lee, Kyu Jin;Choi, Keechoo;Ryu, Sikyun;Baek, Seung Kirl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.103-110
    • /
    • 2012
  • This study presents O/D based emission estimation model and methodology under cold- and hot-start conditions. Contrasting with existing link-based model, new model is able to estimate cold-start emissions with actual traffic characteristics. The results of the case study with new model show similar amount of emission with existing model under hot-start conditions, but five times much more than existing model under cold-start conditions. The annual social benefit estimated by this model is 56.2 hundred million won, which is 48% higher than the result from existing model. It means current green transportation policies are undervalued in terms of air quality improvement. Therefore, New model is expected to improve the objectivity of air quality evaluation results regarding green transportation policies and be applied in various transportation-environment policies.

A Study on Engine-Out HC Emissions during Sl Engine Starting (전기점화 기관의 시동 시 미연탄화수소의 배출 특성 연구)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.22-30
    • /
    • 2003
  • Engine-out HC emissions were investigated during cold and hot start. The tests were conducted according to engine cooling temperatures which were controlled by simulated coolant temperatures of cold and hot start, on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured at a exhaust port and cylinder head using Fast Response Flame Ionization Detector(FRFID). Unburned hydrocarbons emitted at the cold coolant temperature were much higher than those of the hot coolant temperatures. And the main source of the high HC emission was confirmed as misfire at cold coolant temperature. In addition, the effect of intake valve timing on engine-out HC emissions was investigated. The results obtained indicate that optimized intake phasing provides the potential for start-up engine-out HC emissions reduction.

Characteristics of VOCs Emission Exhausted from Cold and Hot Start Vehicles (자동차 cold start와 hot start에 의한 VOCs 배출특성)

  • 유영숙;엄명도;류정호;김종춘;임철수;김선문;선우영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.233-234
    • /
    • 2002
  • 도시대기오염의 주요 배출원으로 알려진 자동차에서 배출되는 VOCs는 인체에 유해할 뿐만 아니라 대기 중에서 질소산화물(NOx)과 함에 광화학반응을 통한 오존 둥 2차 오염물질인 광화학산화물을 형성하는 전구물질로 작용하기 때문에 환경학적, 보건학적으로 매우 큰 영향을 미친다. 이러한 자동차 배출 VOCs가 오존생성에 미치는 영향에 대한 연구는 갈수록 증가하고 있는 대기중 오존 농도 심화현상의 규명과 대기질 개선을 위한 기초자료로서 매우 그 필요성이 더해가고 있다. (중략)

  • PDF

Application and Estimation of Environment Pollutant Emission Considering Vehicle Driving Cycle - Focusing on Feasibility Study - (차량주행주기를 감안한 환경오염물질 산정 및 적용 - 타당성 평가 적용을 중심으로 -)

  • Chung, Sung-Bong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.223-230
    • /
    • 2011
  • According to EMEP/EEA Emission Inventory Guidebook, the emissions produced by vehicle in cold start phase should be calculated differently compared to hot start phase. In this study, considering this driving cycle, more appropriate procedures for estimating Environmental Benefits was suggested. Using Tier 3 standard, all links within the impact area were included in estimating emissions. Traffic volume and travel distance were analyzed using EMME/3 software. For application of the procedures in this study, the case study was carried out with real transportation project. As a result, the Environment-Benefits increased by 30%. If the methodology suggested in this study is applied to feasibility study it will help to activate the investment of the environment-friendly modes like railway in the future.

NOx Conversion Efficiency of SCR Diesel Vehicle Under Cold Start Condition (냉간 시동 조건에서의 SCR 경유자동차의 NOx 전환 효율)

  • Lee, Dong In;Yu, Young Soo;Park, Junhong;Chon, Mun Soo;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.244-253
    • /
    • 2018
  • Recently, The ministry of Environment in korea have introduced Euro-6d temp which was strengthened at the same time as Europe. Small Light-duty passenger vehicles need the SCR system of after-treatment to meet enhanced emission regulations. However, SCR system has a low conversion efficiency in a low temperature less than 200 degree. In this study, the NOx conversion efficiency of SCR system was analyzed by installing a NOx sensors and a temperature sensors in a diesel vehicle. Also, in order to analyze the effect of the cold-start, the test was performed on the same RDE route and compared with the test of hot-start. As a result, SCR system has characteristics of low conversion efficiency under cold-start conditions.

A Study on Characteristics of Methane Emissions from Gasoline Passenger Cars (휘발유 자동차의 메탄(CH4) 배출특성에 관한 연구)

  • Jeon M.S.;Ryu J.H.;Lyu Y.S.;Kim J.C.;Lim C.S.;Kim D.W.;Jeong S.W.;Cho S.Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.649-655
    • /
    • 2005
  • Automotive exhaust is suspected to be one of the main reasons of the rapid increase in greenhouse effect gases in ambient air. Although methane emissions are generally orders of magnitude lower than emissions of $CO_{2}$, the global warming potential (GWP) of methane is greater than that of $CO_{2}$. The environmental impact of methane emissions from vehicles is negligible and is likely to remain so for the foreseeable future. In this study, in order to investigate greenhouse gas emission characteristics from gasoline passenger cars, 20 vehicles were tested on the chassis dynamometer and methane emissions were measured. The emission characteristics by model year, mileage, vehicle speed were discussed. Test mode is CVS-15 mode that have been used to regulate for light-duty vehicle in Korea. It was found that $CH_{4}$ emissions showed higher for cold start, old model year and long mileage than hot start, new model year and short mileage, respectively. These results were compared with IPCC emission factors and the overall our results were anticipated to contribute for domestic greenhouse gas emissions calculation.

A Study on the VOCs Emission Characteristics of RV and MPV (RV차량 및 소형승합차량의 휘발성유기화합물 배출특성 연구)

  • Mun, Sunhee;Hong, Heekyoung;Kim, Sunmoon;Seo, Seokjun;Jung, Sungwoon;Chung, Taekho;Hong, Youdeog;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • Volatile organic compounds (VOCs) are well known as ozone precursors from photochemical reactions and contribute to the formation of photochemical smog which pose health hazards. Also, some of these compounds directly affect the human health due to their toxicity such as benzene. In this study, NMVOCs composition in exhaust gas from recreational vehicle (RV) and (MPV) were characterized using a chassis dynamometer. The results for NMVOCs have reported that alkanes emission was higher than alkenes, aromatics and cycloalkanes due to reactive of diesel oxidation catalysts. The NMVOCs composition according to carbon number was highly distributed between C3 and C6~C8. During the engine cold start condition, NMVOCs emission was higher compared to the engine hot start condition due to the increased catalytic activity. The NMVOCs emission with DPF increased compared to that without DPF. The results of this study will be provide to calculate VOCs emissions from mobile source.

Experimental Study on Natural Gas Conversion Vehicle(1) - Fuel Economy, Emission and Roadability (천연가스 개조 승용차에 대한 실험적 연구(1) - 연비, 배기 및 주행 성능)

  • Kim, Hyung-Gu;Kim, Inok;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.410-419
    • /
    • 2015
  • In this study, the roadability, fuel economy and emission characteristics were evaluated for a natural gas converted vehicle. The results are as follows; Not only the shortage of power was observed in stall test, but also large deterioration of acceleration performance was exposed in roadability. Compared to the original LPG system, the acceleration is 76% in start acceleration and 45 ~ 65% in overtaking acceleration, especially the decline became larger when air conditioner is at work. Furthermore, because the mapping data, which controls the injection depending on driving condition, do not match up with injection system, the failure of air-fuel ratio feedback control occurs resulting from the large gap between the required and the really supplied amount of fuel. This failure cause the exhaust gas to emit without catalytic conversion and the fuel economy based on the fuel heat value to get worse 22% in the mode test and 16% in road test respectively. In addition, the existing injection system does not secure enough fuel at the starting so that it may lead to the fail of clod start, the deterioration of hot start and inharmonic of engine at the idle after start.