• 제목/요약/키워드: hot deformation

검색결과 460건 처리시간 0.023초

열분해 카본블랙 사용량에 따른 밀입도 아스팔트 혼합물 성능 평가 (Performance Evaluation of Dense Graded Asphalt Mixture Modfied by Pyrolysis Carbon Black)

  • 이관호
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.732-737
    • /
    • 2016
  • 본 폐타이어로부터 추출한 열분해 카본블랙(PCB)을 13mm 표층용 밀입도 아스팔트 혼합물 공용성능을 평가하였다. 최적배합설계를 시행하였고, 최적아스팔트 함량은 5.8%을 이용하였다. 아스팔트 혼합물의 탄성계수 평가를 위해 자유단 공진주 시험하였다. PCB 사용량이 증가하면, 측정된 탄성계수는 감소하였다. 다만, 감쇄비 변화는 미미한 것으로 나타났다.평가시험은 간접인장강도시험, 소성변형시험 및 포장설계법을 이용한 전산해석을 이용하였다. PCB 사용시 수침 전과 후의 강도감소율이 평균 10% 이하로 나타났다. 소성변형의 경우 PCB 10% 이상 사용시 오히려 소성변형이 크게 발생하였다. 포장 설계법 전산해석으로부터, PCB 5% 사용시 Top-Down 및 Bottom-Up 균열 저항성이 증가하였고, 소성변형 저감 효과가 크게 나타났다. 열분해 카본블랙 10% 및 15% 사용시 소성변형은 적게 나타났지만, 내구성은 크게 저하되는 것으로 나타났다. 전체적으로 PCB 5%를 이용한 표층용 아스팔트 혼합물의 공용성이 가장 우수한 것으로 나타났다.

Al 6061 합금의 고온 소성변형 조건의 예측 (Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy)

  • 김성일;정태성;유연철;오수익
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석 (Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method)

  • 윤승채;김도형
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

변형지도 모델링을 통한 몰리브데늄의 고온 변형에 따른 미세조직 변화 연구 (Microstructural Evolution during Hot Deformation of Molybdenum using Processing Map Approach)

  • 김영무;이성호;이성;노준웅
    • 한국분말재료학회지
    • /
    • 제15권6호
    • /
    • pp.458-465
    • /
    • 2008
  • The hot deformation characteristics of pure molybdenum was investigated in the temperature range of $600{\sim}1200^{\circ}C$ and strain rate range of $0.01{\sim}10.0/s$ using a Gleeble test machine. The power dissipation map for hot working was developed on the basis of the Dynamic Materials Model. According to the map, dynamic recrystallization (DRX) occurs in the temperature range of $1000{\sim}1100^{\circ}C$ and the strain rate range of $0.01{\sim}10.0/s$, which are the optimum conditions for hot working of this material. The average grain size after DRX is $5{\mu}m$. The material undergoes flow instabilities at temperatures of $900{\sim}1200^{\circ}C$ and the strain rates of $0.01{\sim}10.0/s$, as calculated by the continuum instability criterion.

Effect of Microstructure on the Corrosion Resistance of Nd-Fe-B Permanent Magnets

  • Li, Jiajie;Li, Wei;Li, Anhua;Zhao, Rui;Lai, Bin;Zhu, Minggang
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.304-307
    • /
    • 2011
  • High performance Nd-Fe-B magnets can be manufactured by both sintering and hot deformation. The corrosion behaviors of the magnets prepared by the two processes were compared. Effect of microstructure on the corrosion resistance of Nd-Fe-B magnets was also investigated. A neutral salt spray test (NSS) was performed for the different-processed magnets. The weight losses of the samples after the corrosion test were measured. The corrosion microstructures were observed using a scanning electron microscope. It shows that the corrosion resistance of hot deformed magnets is much better than that of the sintered ones because the grain size and the distribution of Nd-rich phases of the hot deformed magnets are much finer and more uniform than those of the sintered ones. The different microstructure between the sintered and the hot deformed magnets causes the different corrosion behavior.

사이징 프레스에서 폭 압하 공정중 결함 저감을 위한 엔빌의 형상설계 (Design of the Anvil Shape in Sizing Press for Decrease of the Defect Generated Width Reduction)

  • 이상호;이성진;이종빈;김병민
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.52-58
    • /
    • 2009
  • Generally, a vertical rolling process is used to achieve extensive width reduction in hot strip mill. However, it is impossible to avoid the defects such as dog-bone and edge-seam defect. The sizing press process has been developed in response to the defects mentioned above. Especially, this study is carried out to investigate the deformation of slab by two-step sizing press. The deformation behavior of slab in the sizing press process is more favorable than that in conventional vertical rolling edger. The FE-simulation is applied to predict the deformation behavior of the slab. In this paper, the several causes of the asymmetrical deformation are mentioned for the purpose of understanding of the anvil shape. Load, dog-bone and edge-seam defect are discussed in width sizing process considering the anvil shape. And to reduce the problems generated at rougher mill just after sizing press, these are studied in this paper. The deformation behavior of slabs and optimum anvil shape are obtained by rigid-plastic finite element analyses and neural network.

Al 6061 합금의 고온 소성변형 조건에 관한 연구 (High Temperature Plastic Deformation Condition of Al 6061 Alloy)

  • 김성일;정태성;유연철;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.76-79
    • /
    • 1998
  • High temperature plastic deformation behavior of Al 6061 alloy was characterized by hot torsion test. The Al 6061 alloy deformed continuously in the temperature range of 400∼550$^{\circ}C$, and strain rate range of 0.05∼5/sec. The softening mechanism of Al 6061 alloy was dynamic recrystallization and identified by hyperbolic sine law and zener-Hollmon parameter. The evolution of grain size and deformation resistance were calculated by the relationships of deformation variables.

  • PDF

$SiC_p/Al-Si$ 복합재료의 고온변형 특성 (High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites)

  • 전정식;고병철;김명호;유연철
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

Application the mechanism-based strain gradient plasticity theory to model the hot deformation behavior of functionally graded steels

  • Salavati, Hadi;Alizadeh, Yoness;Berto, Filippo
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.627-641
    • /
    • 2014
  • Functionally graded steels (FGSs) are a family of functionally graded materials (FGMs) consisting of ferrite (${\alpha}$), austenite (${\gamma}$), bainite (${\beta}$) and martensite (M) phases placed on each other in different configurations and produced via electroslag remelting (ESR). In this research, the flow stress of dual layer austenitic-martensitic functionally graded steels under hot deformation loading has been modeled considering the constitutive equations which describe the continuous effect of temperature and strain rate on the flow stress. The mechanism-based strain gradient plasticity theory is used here to determine the position of each layer considering the relationship between the hardness of the layer and the composite dislocation density profile. Then, the released energy of each layer under a specified loading condition (temperature and strain rate) is related to the dislocation density utilizing the mechanism-based strain gradient plasticity theory. The flow stress of the considered FGS is obtained by using the appropriate coefficients in the constitutive equations of each layer. Finally, the theoretical model is compared with the experimental results measured in the temperature range $1000-1200^{\circ}C$ and strain rate 0.01-1 s-1 and a sound agreement is found.

열연 권취중 냉각이력 해석을 통한 재질예측 및 제어기술 개발 (The Prediction and Control of Plate Mechanical Properties By the Analysis of Temperature History on ROT in Hot Strip Mill)

  • 이중형;김홍준;김재부
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.111-113
    • /
    • 2007
  • The Mechanical properties of steel in hot strip mill were associated with the alloy composition, plastic deformation, cooling history and so on. In the case of the same alloy composition and deformation conditions, cooling history on ROT (run out table) is the main factor in affecting mechanical properties of steel, especially, in carbon steel. On ROT, the steel undergoes under various kinds of cooling conditions such as radiation, convection by air, water and wetting zone. The coiling temperature (CT) of the steel is also important factor in affecting mechanical properties. But with the same CT, the mechanical properties of steel can be different because the temperature history of cooling is more important factor than CT itself. In this study, we have studied the relations between temperature history and mechanical properties of steel and then the predicted mechanical properties have compared with the measured values.

  • PDF