• Title/Summary/Keyword: host plant

Search Result 1,183, Processing Time 0.032 seconds

Distribution and Population Dynamics of Korean Endangered Species; Hipparchia autonoe (Lepidoptera: Nymphalidae) on Mt. Hallasan, Jeju Island, Korea (한국산 멸종위기종 산굴뚝나비(나비목, 네발나비과)의 분포와 개체군 동태)

  • Kim, Do-Sung;Cho, Young-Bok;Kim, Dong-Soon;Lee, Yeong-Don;Park, Seong-Joon;Ahn, Nung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.550-558
    • /
    • 2014
  • This study was conducted to investigate the distribution and the population dynamics of Hipparchia autonoe by using a line transect and Mark-Release-Recapture (MRR) at the Mt. Halla in Jeju Island. The results showed that H. autonoe was found from 1,500 m above the sea level. Total 1,493 H. autonoe with 978 males and 515 females were captured and released in the MRR study site. Among them, 518 individuals including 284 males and 234 females were recaptured. The average survival time was 2.31 days with 2.14 days for males and 3.47 days for females, indicating longer survival time in case of females than males. The daily population size of males estimated in the MRR study site was maintained about 1,000 individuals in July and gradually decreased less than 200 in August. The number of females showed peak at 335 individuals on July 24, and gradually decreased less than 120 in August. Thus, female population was 1/3 of males. The average travel distance of male and female H. autonoe were $116.8{\pm}191.9m$ and $118.4{\pm}161.5m$, respectively, indicating almost same between sexes. H. autonoe in the Mt. Halla formed single population group in the wide meadow around the Baekrokdam Lake. The highest population density of H. autonoe was occurred in the restored area from damages, where host plants such as the sheep's fescue or the food plant are abundant by artificial restoration efforts.

Investigation of Habitat and Development of Indoor-rearing Condition of Peacock Butterfly, Inachis io(Linnaeus) (공작나비(Peacock butterfly), Inachis io (Linnaeus)의 서식지 조사 및 실내사육 조건 구명)

  • Lee, Sang-Hyun;Kim, Se-Gwon;Nam, Gyoung-Pil;Son, Jai-Duk;Kim, Nam-ee;Park, Young-Kyu;Kang, Pil-Don;Choi, Young-Cheol
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study was conducted for investigation of habitat and development of indoor-rearing conditions of peacock butterfly, Inachis io (Linnaeus). Three different region, Mt. Kwangduk-san, Mt. Hae-san and Mt. Taebaek-san in Kangwon-do, was selected for investigation of domestic distribution and ecological environment of peacock butterfly. In result, there are many butterflies in the only two region, Mt. Kwangduk-san and Mt. Hae-san. On 16th April, 4 overwintered butterflies were observed in Mt. Hae-san. At the end of June and early in July, 51 individual next generation's butterflies were observed in Mt. Kwangduk-san and Mt. Hae-san. For development of indoor-rearing conditions, collected each 15 male and female peacock butterflies was reared in a room condition. Female butterflies laid eggs in the egg cluster on the underside of host-plant's leaves, Urtica angustifolia Fisch., in the ovipositioning room. We took 11 egg cluster with average $404.6{\pm}23.6$ eggs. Hatchablity of eggs was 92.3%, and the eggs hatched within $5.1{\pm}0.9$ days from the day of oviposition under high temperature, long day condition($25^{\circ}C$, 14L:10D). The larval period was $18.3{\pm}1.0$ days under high temperature, long day condition($25^{\circ}C$, 14L:10D), showing 81.0% pupal ratio. The head width of each developmental larval stage were $0.37{\pm}0.01mm$(1st instar), $0.66{\pm}0.02mm$(2nd instar), $1.07{\pm}0.05mm$(3rd instar), $1.81{\pm}0.07$(4th instar), $2.76{\pm}0.08$(5th instar). The pupal period was $8.4{\pm}0.6$ days, and the emergence rate was 87.5%.

Root Colonization by Beneficial Pseudomonas spp. and Bioassay of Suppression of Fusarium Wilt of Radish (유용 Pseudomonas 종의 근면점유와 무우 Fusarium시들음병의 억제에 관한 생물학적 정량)

  • Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.10-19
    • /
    • 1997
  • Fusarium wilt of radish (Raphanus sativus L.) is caused by the Fusarium oxysporum f. sp. raphani (FOR) which mainly attacks Raphanus spp. The pathogen is a soil-borne and forms chlamydospores in infected plant residues in soil. Infected pathogen colonizes the vascular tissue, leading to necrosis of the vascular tissue. Growth promoting beneficial organisms such as Pseudomonas fluorescens WCS374 (strain WCS374), P. putida RE10 (strain RE10) and Pseudomonas sp. EN415 (strain EN415) were used for microorganisms-mediated induction of systemic resistance in radish against Fusarium wilt. In this bioassy, the pathogens and bacteria were treated into soil separately or concurrently, and mixed the bacteria with the different level of combination. Significant suppression of the disease by bacterial treatments was generally observed in pot bioassy. The disease incidence of the control recorded 46.5% in the internal observation and 21.1% in the external observation, respectively. The disease incidence of P. putida RE10 recorded 12.2% in the internal observation and 7.8% in the external observation, respectively. However, the disease incidence of P. fluorescens WCS374 which was proved to be highly suppressive to Fusarium wilt indicated 45.6% in the internal observation and 27.8% in the external observation, respectively. The disease incidence of P. putida RE10 mixed with P. fluorescens WCS374 or Pseudomonas sp. EN415 was in the range of 10.0-22.1%. On the other hand, the disease incidence of P. putida RE10 mixed with Pseudomonas sp. EN415 was in the range of 7.8-20.2%. The colonization by FOR was observed in the range of $2.4-5.1{\times}10^3/g$ on the root surface and $0.7-1.3{\times}10^3/g$ in the soil, but the numbers were not statistically different. As compared with $3.8{\times}10^3/g$ root of the control, the colonization of infested ROR indicated $2.9{\times}10^3/g$ root in separate treatments of P. putida RE10, and less than $3.8{\times}10^3/g$ root of the control. Also, the colonization of FOR recorded $5.1{\times}10^3/g$ root in mixed treatments of 3 bacterial strains such as P. putida RE10, P. fluorescens WCS374 and Pseudomonas sp. EN415. The colonization of FOR in soil was less than that of FOR in root part. Based on soil or root part, the colonization of ROR didn't indicate a significant difference. The colonization of introduced 3 fluorescent pseudomonads was observed in the range of $2.3-4.0{\times}10^7/g$ in the root surface and $0.9-1.8{\times}10^7/g$ in soil, but the bacterial densities were significantly different. When growth promoting organisms were introduced into the soil, the population of Pseudomonas sp. in the root part treated with P. putida RE10 was similar in number to the control and recorded the low numerical value as compared with any other treatments. The population density of Pseudomonas sp. in the treatment of P. putida RE10 indicated significant differences in the root part, but didn't show significant differences in soil. The population densities of infested FOR and introduced bacteria on the root were high in contrast to those of soil. P. putida RE10 and Pseudomonas sp. EN415 used in this experiment appeared to induce the resistance of the host against Fusarium wilt.

  • PDF

Management of the Development of Insecticide Resistance by Sensible Use of Insecticide, Operational Methods (실행방식 측면에서 살충제의 신중한 사용에 의한 저항성 발달의 관리)

  • Chung, Bu-Keun;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.123-158
    • /
    • 2009
  • An attempt was made to stimulate future research by providing exemplary information, which would integrate published knowledge to solve specific pest problem caused by resistance. This review was directed to find a way for delaying resistance development with consideration of chemical(s) nature, of mixture, rotation, or mosaics, and of insecticide(s) compatible with the biological agents in integrated pest management (IPM). The application frequency, related to the resistance development, was influenced by insecticide activity from potentiation, residual period, and the vulnerability to resistance development of chemical, with secondary pest. Chemical affected feeding, locomotion, flight, mating, and predator avoidance. Insecticides with negative cross-resistance by the difference of target sites and mode of action would be adapted to mixture, rotation and mosaic. Mixtures for delaying resistance depend on each component killing very high percentage of the insects, considering allele dominance, cross-resistance, and immigration and fitness disadvantage. Potential disadvantages associated with mixtures include disruption of biological control, resistance in secondary pests, selecting very resistant population, and extending cross-resistance range. The rotation would use insecticides in high and low doses, or with different metabolic mechanisms. Mosaic apply insecticides to the different sectors of a grid for highly mobile insects, spray unrelated insecticides to sedentary aphids in different areas, or mix plots of insecticide-treated and untreated rows. On the evolution of pest resistance, selectivity and resistance of parasitoids and predator decreased the number of generations in which pesticide treatment is required and they could be complementary to refuges from pesticides To enhance the viability of parasitoids, the terms on the insecticides selectivity and factors affecting to the selectivity in field were examined. For establishment of resistant parasitoid, migration, survivorship, refuge, alternative pesticides were considered. To use parasitoids under the pressure of pesticides, resistant or tolerant parasitoids were tested, collected, and/or selected. A parasitoid parasitized more successfully in the susceptible host than the resistant. Factors affecting to selective toxicity of predator are mixing mineral oil, application method, insecticide contaminated prey, trait of individual insecticide, sub-lethal doses, and the developmental stage of predators. To improve the predator/prey ratio in field, application time, method, and formulation of pesticide, reducing dose rate, using mulches and weeds, multicropping and managing of surroundings are suggested. Plant resistance, predator activity, selective insect growth regulator, and alternative prey positively contributed to the increase of the ratio. Using selective insecticides or insecticide resistant predator controlled its phytophagous prey mites, kept them below an economic level, increased yield, and reduced the spray number and fruits damaged.

Field Application Techniques of Simultaneous Mating Disruptor Against Grapholita molesta and G. dimorpha (복숭아순나방과 복숭아순나방붙이에 대한 동시 교미교란제의 현장 적용 기술)

  • Cho, Jum-Rae;Park, Chang-Gyu;Park, Il-Kweon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.209-220
    • /
    • 2018
  • Mating disruption (MD) has been widely used to effectively control Grapholita molesta in apple orchards. A simultaneous mating disruption (SMD) techniques have been developed to control both G. molesta and G. dimorpha. This study was performed to determine the practical parameters to apply the SMD technique to field conditions. To determine the application amount of SMD lures, a dispenser containing 10 mg pheromone was placed at different numbers of trees in an orchard. Application at every other tree (= one dispenser per two trees) was relatively safe to expect effective MD efficiency in both wax and polyethylene (PE) formulations. One time application at the end of March was enough to maintain a year round MD efficacy against both species. A fence treatment using food trap was applied to prevent any immigratory mated females from nearby untreated regions. To enhance the food trap by adding host-derived secondary compounds, terpinyl acetate (TA) was screened to be effective to attract females of Grapholita molesta among six compounds contained in apple fruit extracts. Among different TA concentrations, 0.05% TA treatment was the most effective to attract the adults. A mixture of TA and sugar was effective to attract and kill females and called FAKT (female attract-to-kill techniques). FAKT was treated at approximately 6 m interval at the edge of the apple orchards. The females trapped by the FAKT included mated females possessing vitellogenic oocytes. SMD supplemented with FAKT maintained the high MD efficacy and significantly suppressed leaf damage induced by the two insect pests compared to control or single SMD treatment.

Isolation and Characterization of the IAA Producing Methylotrophic Bacteria from Phyllosphere of Rice Cultivars(Oryza sativa L.) (벼(Oryza sativa L.)의 잎 면으로부터의 IAA를 생성하는 Methylotrophic Bacteria의 분리 선별 및 특성 비교)

  • Lee, Kyu-Hoi;Munusamy , Madhaiyan;Kim, Chung-Woo;Lee, Hyoung-Seok;Selvaraj, Poonguzhali;Sa, TongMin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf samples of 19 rice cultivars collected from three regions of Korea. Nineteen pink pigmented isolates showing characteristic growth on methanol were obtained. Physiological and biochemical characters of each isolate were examined according to methods described in Bergey's Manual of Systematic Bacteriology. When phylotypes were defined by performing numerical analysis of 37 characteristics, four distinct clusters were formed. The two reference strains, Methylobacterium extorquens AM1 and Methylobacterium fujisawaense KACC10744 were found to group under cluster IV and cluster III respectively. Cluster I diverged on the basis of nitrate reduction and four isolates showed tolerance upto 0.5 M NaCl concentrations. Two strains in cluster I and III were found to possess methane utilizing properties. Most of the isolates in all the four clusters utilized monosaccharides, disaccharide and polyols as carbon source. When the isolates were subjected for indole-3-acetic acid (IAA) analysis in the presence of L-tryptophan, only 8 isolates exhibited IAA production. In addition, the nitrogen source in the medium was found to influence the IAA production. Addition of $(NH_4)_2SO_4$ in the medium led to a 2 to 30 fold increase in the indole synthesis. However, $KNO_3$, $NH_4NO_3$ and $NH_4Cl$ substitution did not significantly stimulate the synthesis of IAA in the growth medium. Result of gnotobiotic root elongation assay significantly increased roots and shoots lengths, and number of lateral roots, which is mediated by IAA production in the culture medium. The rice seedlings primary roots from seeds treated with methylotrophic isolates were on average 27 to 56% longer than the roots from seeds treated with the uninoculated seeds. In addition, application of different high concentrations of authentic IAA ($400g\;mL^{-1}$) to roots of rice seedlings inhibited root growth. However, the IAA concentration from 10 to $200g\;mL^{-1}$, IAA promoted root growth of rice seedlings. These results suggest that bacterial IAA plays a major role in the development of the host plant root system.

Rhizobium meliloti Populations and Alfalfa Yields Due to Nitrogen Fertilization and Inoculation Methods at Cultivated Upland Soil (숙전(熟田)에서 질소시용(窒素施用)과 Rhizobium meliloti의 접종방법(接種方法)이 근류균(根瘤菌) 밀도(密度) 및 알팔파 수량(收量)에 미치는 영향(影響))

  • Kang, Ui-Gum;Jung, Yeun-Tae;Lee, Soo-Kwan;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.275-280
    • /
    • 1992
  • Inoculation responses of alfalfa[Medicago sativa(L.) Vernal] to Rhizobium meliloti with nitrogen fertilization were characterized by soil populations and plant yields from 1989 to 1991 at cultivated upland soil, which contained $3.1{\times}10$cells of R. meliloti/g.soil. The results obtained accordingly to fertilizing with 8Kg N/10a and differently inoculating the host such as initial and annual inoculation methods were as follows : 1. Soil populations of R. meliloti were increased more at no nitrogen fertilized condition compared to nitrogen fertilized condition to 2nd year experiment from 1st year that came up $1.6{\times}10^3$cells/g.soil, but at 3rd year the trend was reversed. Between inoculation methods, on the whole, the annual inoculation caused more populations, which were $2.0{\times}10^4$cells/g.soil in maximum number. And the populations declined after winter but recovered passing through summer season. 2. Alfalfa yields were mainly influenced by rhizobial populations rather than by fertilizing nitrogen showing a significant correlation(Y=0.36+0.287X, $r^2=0.58^{**}$) with the former. The increased extents of yields obtained by inoculation at no nitrogen and nitrogen fertilized conditions, respectively, were 66 and 10% in 1st : 13 and 20% in 2nd : 19 and 13% in 3rd year experiment with the initial inoculation, and were 66 and 10% in 1st ; 30 and 20% in 2nd : 35 and 36% in 3rd year experiment with the annual inoculation. 3. The results demonstrated the importance of inoculating, if possible, annual inoculating alfalfa to get much yields even at cultivated upland soil.

  • PDF

Characteristics and Virulence Assay of Entomopathogenic Fungus Nomuraea rileyi for the Microbial Control of Spodoptera exigua (Lepidoptera: Noctuidae) (파밤나방의 미생물적 방제를 위한 병원성 곰팡이 Nomuraea rileyi의 특성 및 병원성 검정)

  • Lee, Won Woo;Shin, Tae Young;Ko, Seung Hyun;Choi, Jae Bang;Bae, Sung Min;Woo, Soo Dong
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.284-292
    • /
    • 2012
  • To date, chemical control remains the most common way to reduce beet armyworm (Spodoptera exigua) populations. However, this insect has become more tolerant or resistant to many chemical insecticides and the insect larvae usually hide inside hollow, tube-like leaves of host plant so they were difficult to kill by spraying insecticides. The use of viral and bacterial insecticide to solve these problems has not been successful because of their novel feeding habit. To overcome these problems, in this study, the biological characteristics and virulence of an entomopathogenic fungus isolated from the cadaver of larvae beet armyworm were investigated. Isolated entomopathogenic fungus was identified as Nomeraea rileyi (Farlow) Samson by morphological examinations and genetic identification using sequences of the ITS, ${\beta}$-tubulin gene and EF1-${\alpha}$ regions. This fungus was named as N. rileyi SDSe. Virulence tests against 3rd larvae of beet armyworm were conducted with various conidial suspensions from $1{\times}10^4$ to $10^8$ conidia/ml of N. rileyi SDSe in laboratory conditions. Mortality rate of beet armyworm showed from 20 to 54% and the virulence increased with increasing conidial concentrations. Although N. rileyi SDSe showed low mortality rate against beet armyworm, it is expected that N. rileyi SDSe will be used effectively in the integrated pest management programs against the beet armyworm.

Seasonal Changes in Colonization and Spore Density of Arbuscular-Mycorrhizae in Citrus Groves (감귤뿌리에서의 Arbuscular-Mycorrhizae 형성과 감귤원 토양중 포자밀도의 계절적 변화)

  • Kim, Sang-Youb;Oh, Hyun-Woo;Moon, Doo-Khil;Han, Hae-Ryong;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.174-181
    • /
    • 1998
  • In four citrus grow of Satsuma mandarin (rootstock of trifoliate orange) including two grove of organical management and two groves of conventional management, spores of arbuscular mycorrhizal(AM) fungi were identified and seasonal changes in spore density in soils and AM colonization of citrus roots were investigated. AM colonization in weeds found in the groves were also examined. Three species of Glomus (G.deserticola, G. vesiculiferum, G. rubiforme ) and one unknown species of Acaulospora were observed in all of the groves. Annual mean density of AM fungal spores were in the range of 10,000${\sim}$40,000 per 100g soil with more spores in the organically-managed groves. The least spores were observed in December in all groves, and the most spores in April in the organically-managed groves while in February or April in the conventionally- managed. Annual mean AM colonization more 27% of citrus root were observed in the organically-managed with the high peaks in April and October and the minimum in August, while mean colonization less than 15% in the conventionally-managed with the peak in February and the minimum in different times depending on groves and years. AM colonization corresponded to a sigmoidal curve consisting of a laf phase during winter and a subsequent increase in spring, then succeeded by a maximum, and then a decrease at the end of vegetation. Fungal spore density and AM colonization showed a parallel pattern during the sample period. The seasonality appeared to be related more to the phenology of the plant than to the soil factors. Generally more spore density and AM colonization were found in organically managed groves. AM colonization was not correlated with available P and organic matter content in soil in this field investigation. Among sixteen weed species found in the groves, Astrogalus sinicus of Leguminosae, Portulaca oleracea of Portulacaceae showed high colonization in all groves and they can be considered as a source of inoculumn and host plants for propagation of AM fungi.

  • PDF

Antibacterial Effect of Hiscus cannabinus L. Methanol Extract against Pathogenic Bacteria in Domestic Animals (Kenaf methanol 추출물의 가축 주요 병원성 균에 대한 항균효과)

  • Lim, Jeong-Ju;Kim, Dong-Hyeok;Lee, Jin-Ju;Kim, Dae-Geun;Lee, Hu-Jang;Min, Won-Gi;Park, Dong-Jin;Huh, Moo-Ryong;Chang, Hong-Hee;Rhee, Man-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • Hibiscus cannabinus L. is a plant in the Malvaceae family, that was seeded at June 1st in 2010 and harvested at November 18th. The present study was designated to investigate the safety for host cells, antibacterial effects of Hibiscus cannabinus L. of flower (HCME-F) or leaf (HMEF-L) methanol extract for typical Gram's positive bacteria (St. aureus and Str. epidermidis) or Gram's negative bacteria (S. typhimurium and E. coli). In treatment of different concentrations of HCME-F or HMEF-L (1, 50 and $100{\mu}g/ml$), cytotoxic effects were not shown to RAW 264.7 cells until 24 h incubation. In determination of antibacterial activity of HCME-F or HMEF-L, the antibacterial activities for St. aureus and Str. epidermidis were markedly increased compared to that of untreated control group, but antibacterial activity of HCME-F or HMEF-L for S. typhimurium and E. coli were not changed. Taken together, we demonstrated that methanol extract of HCME-F or HMEF-L showed the safety for RAW 264.7 cells and antibacterial activities for Gram's positive pathogenic bacteria St. aureus and Str. epidermidis. These findings suggest that a methanol extract of Kenaf flower or leaf may be useful alternatives of conventional chemotherapies for dermatitis and mastitis causing Gram's positive pathogens such as Stapylococcus spp. and Streptococcus spp. in domestic animals and humans.