• 제목/요약/키워드: host materials

검색결과 505건 처리시간 0.023초

ENERGY TRANSFER PROCESS BETWEEN $Ce^{3+}$ AND $Tb^{3+}$ IN LaOCl HOST

  • Kim, Taesam;Sung, Hakje;Kim, Kunhan;Ha, Younggu;Chang, Joowhan;Song, Sunho
    • 분석과학
    • /
    • 제6권3호
    • /
    • pp.319-328
    • /
    • 1993
  • LaOCl 입자 물질에서 $Ce^{3+}$$Tb^{3+}$ 사이의 에너지 전달 과정을 연구하였다. $Ce^{3+}$에서 흡수된 에너지는 강한 형광 방출 준위가 있는 $Tb^{3+}$으로 에너지가 전달되었다. 에너지가 전달되는 확률은 활성제 이온의 농도 혹은 거리에 크게 의존하였다. 농도가 낮을 때는 $Tb^{3+}$으로 전달된 에너지가 $^5D_3$ 준위에서 방출되었다. 그러나 높은 농도에서는 다시 $Ce^{3+}$으로 에너지는 이동하고(역전달) 더 낮은 $Ce^{3+}$ 혹은 $Tb^{3+}$의 준위로부터 방출되었다. 역전달 현상은 $Ce^{3+}$ 이온의 농도를 변화시키는 실험을 통하여 확인하였다. 이와 같이 $Ce^{3+}$이 관여하면 매개하지 않은 경우보다 이완이 잘 일어났다.

  • PDF

청색 발광층에 의한 백색 OLED의 발광 특성 (Emission Properties of White Organic Light-Emitting Diodes with Blue Emitting Layer)

  • 천현동;나현석;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.451-456
    • /
    • 2013
  • To study emission properties of white phosphorescent organic light emitting devices (PHOLEDs), we fabricated white PHOLEDs of ITO(150 nm) / NPB(30 nm) / TcTa(10 nm) / mCP(7.5 nm) / light-emitting layer(25 nm) / UGH3(5 nm) / Bphen(50 nm) / LiF(0.5 nm) / Al(200 nm) structure. The total thickness of light-emitting layer with co-doping and blue-doping/co-doping using a host-dopant system was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir$(acac) in UGH3 as host, respectively. The OLED characteristics were changed with position and thickness of blue doping layer and co-doping layer as light-emitting layer and the best performance seemed in structure of blue-doping(5 nm)/co-doping(20 nm) layer. The white PHOLEDs showed the maximum current density of $34.5mA/cm^2$, maximum brightness of $5,731cd/m^2$, maximum current efficiency of 34.8 cd/A, maximum power efficiency of 21.6 lm/W, maximum quantum efficiency of 15.6%, and a Commission International de L'Eclairage (CIE) coordinate of (0.367, 0.436) at $1,000cd/m^2$.

Template Synthesis and Characterization of Host (Nanocavity of Zeolite Y)-Guest ([Cu([18]aneN4S2)]2+, [Cu([20]aneN4S2)]2+, [Cu(Bzo2[18]aneN4S2)]2+, [Cu(Bzo2[20]aneN4S2)]2+) Nanocomposite Materials

  • Salavati-Niasari, Masoud;Mirsattari, Seyed Nezamodin;Saberyan, Kamal
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.348-354
    • /
    • 2009
  • Copper(II) complexes with tetraoxo dithia tetraaza macrocyclic ligands; [18]ane$N_4S_2$: 1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, [20]ane$N_4S_2$: 1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane,Bzo2[18]ane$N_4S_2$: dibenzo-1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, Bzo2[20]ane$N_4S_2$: dibenzo-1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane; were entrapped in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); $[Cu(N-N)_2]^{2+}$-NaY; in the nanopores of the zeolite, and (ii) in situ template condensation of the copper(II) precursor complex with thiodiglycolic acid. The obtained complexes and new host-guest nanocomposite materials; $[Cu([18]aneN_4S_2)]^{2+}-NaY,\;[Cu([20]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[18]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[20]aneN_4S_2)]^{2+}$-NaY; have been characterized by elemental analysis FT-IR, DRS and UV-Vis spectroscopic techniques, molar conductance and magnetic moment data, XRD and, as well as nitrogen adsorption. Analysis of data indicates all of the complexes have been encapsulated within nanopore of zeolite Y without affecting the zeolite framework structure.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

PSO를 이용하여 탐색한 황색 발광을 하는 Sr-Al-Si-O-N 계 신규 LED용 형광체 (Discovery of a Yellow Light Emitting Novel Phosphor in Sr-Al-Si-O-N System Using PSO)

  • 박운배
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.301-306
    • /
    • 2017
  • The discovery of new luminescent materials for use in light-emitting diodes(LEDs) has been of great interest, since LED-based solid state lighting applications are attracting a lot of attention in the energy saving and environmental fields. Recent research trends have centered on the discovery of new luminescent materials rather than on fine changes in well-known luminescent materials. In a sense, the novelty of our study beyond simple modification or improvement of existing phosphors. A good strategy for the discovery of new fluorescent materials is to introduce activators that are appropriate for conventional inorganic compounds, that have well-defined structures in the crystal structure database, but have not been considered as phosphor hosts. Another strategy is to discover new host compounds with structures that cannot be found in any existing databases. We have pursued these two strategies at the same time using composite search technology with particle swarm optimization(PSO). In this study, using PSO, we have tracked down a search space composed of Sr-Al-Si-O-N and have discovered a new phosphor structure with yellow luminescence; this material is a potential candidate for UV-LED applications.

The Preparation of $Ce^{3+}$doped Y-SiAlON for LED Phosphor.

  • Ahn, Joong-In;Han, Cheong-Hwa;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.644-646
    • /
    • 2004
  • We have investigated luminescence properties of Ln-SiAlON materials doped with $Ce^{3+}$. Low-energy 4f${\leftrightarrow}$5d transitions were observed as compared to the luminescence of this ion doped in oxidic host-lattices.$^1$ Ce-doped Y-a-SiAlON show bright long wavelength luminescence with high absorption for 305 and 455nm excitation. In our experiment, the sintering temperature of this material(1400$^{\circ}C$) was lower than that of normal sintering temperature (1700$^{\circ}C$). However, Single phase of SiAlON was not composed we observed the YAG phase.

  • PDF

Thermal Stability Study of $Eu^{2+}-doped$ $BaAl_2Si_2O_8$ Phosphor using Polymorphism for Plasma Display Panel applications

  • Im, Won-Bin;Kim, Yong-Il;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1568-1571
    • /
    • 2005
  • We have evaluated thermal stability of a $BaAl_2Si_2O_8:Eu^{2+}$ $(BAS:Eu^{2+})$, which have polymorph property such as hexagonal, monoclinic structure depending upon firing temperature. When both polymorph $BAS:Eu^{2+}$ were baked in air at 500 $^{\circ}C$ for 30 min, the photoluminescence (PL) intensity of $monoclinic-BAS:Eu^{2+}$ was maintained of the initial intensity. However, the PL intensity of $hexagonal-BAS:Eu^{2+}$ decreased significantly, corresponding to about 34 %. From analyses of Rietveld refinement, the difference of thermal stability of both $BAS:Eu^{2+}$ can be ascribed to both crystal structure of host materials and the average interatomic distances between $Eu^{2+}$ ion and oxygen their crystal structure which plays a key role of shield for Eu2+ ions against oxidation atmosphere.

  • PDF

Luminescence of $Eu^{3+}$ and $Sm^{3+}$ Doped Potassium Tungstate Phosphors

  • Lee, Gwan-Hyoung;Kang, Shin-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1510-1513
    • /
    • 2005
  • The luminescent properties of $Eu^{3+}$ and $Sm^{3+}$ doped potassium tungstate phosphor were investigated. The $K_{4-3x}(WO_4)_2:Eu_x$, $Sm_y$ phosphor was produced by firing the mixed precursors, followed by re-firing with a flux. The re-firing process provided the clean surface to the particles. The excitation spectra showed that the strong absorption in the region of ultra violet light occurred due to the high europium doping concentration. The incorporation of europium to potassium tungstate was easier, compared to other host materials. The excitation spectra could be controlled by the small addition of samarium. The increase of energy absorption around 405nm was assigned to the $Sm^{3+}$ ions. The comparison between real x-ray diffraction and simulated one revealed that the crystal structure of $K_{4-3x}(WO_4)_2:Eu_x,Sm_y$ phosphor is monoclinic with a space group, C2/c.

  • PDF

Effects of Morphology on Energy transfer and Device performance in Phosphorescent Dye Doped Polymer Light Emitting Devices

  • Noh, Yong-Young;Lee, Chang-Lyoul;Kim, Jang-Joo;Yase, Kiyoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.98-101
    • /
    • 2002
  • The effect of morphology on energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes is reported. We selected two host polymers (PVK and PFHP) which have nearly the same potential for the energy transfer to Ir(ppy)$_3$. The PFHP:Ir(ppy)$_3$ film showed b-micron size aggregation, whereas the PVK:Ir(ppy)$_3$ film showed homogeneous and smooth images. As a result, energy transfer is efficient with high emission efficiency in PVK:Ir(ppy)$_3$ whereas little energy transfer and low quantum efficiency are obtained in PFHP:Ir(ppy)$_3$.

  • PDF

버퍼층으로서 플라즈마 polythiopheneol 유기EL소자에 미치는 영향 (Effect of plasma polythiophene as a buffer layer inserted on OLEDs)

  • 박상무;이붕주;김형권;임경범;김종택;박수홍;임응춘;이은학;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.177-180
    • /
    • 2002
  • The purpose of this thesis is to develope buffer materials by the plasma polymerization method. In this article the buffer materials, plasma poly thiophene(PPTh) is used to study the interface of eter/organic in organic light emitting diodes(OLED). The interface of meter/organic materials is the important and critical objectives in development of OLED. The hole transport layer was N,N'-dipheneyl-N, N'bis-(3-methypheneyl)-1,1'dipheneyl-4,4'-diamine (TPD); the host material of mission layer was 8-tris-hydroxyquinoline aluminium (Alq3). When PPTh was inserted between ITO and TPD, emission efficiency increased.

  • PDF