• Title/Summary/Keyword: host gene

Search Result 857, Processing Time 0.025 seconds

Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

  • Zhao, Xueyan;Yang, Qiang;Zhao, Kewei;Jiang, Chao;Ren, Dongren;Xu, Pan;He, Xiaofang;Liao, Rongrong;Jiang, Kai;Ma, Junwu;Xiao, Shijun;Ren, Jun;Xing, Yuyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.925-937
    • /
    • 2016
  • In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive $F_1$ piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive $F_1$ boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive $F_1$ sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.

Characteristics and Virulence Assay of Entomopathogenic Fungus Nomuraea rileyi for the Microbial Control of Spodoptera exigua (Lepidoptera: Noctuidae) (파밤나방의 미생물적 방제를 위한 병원성 곰팡이 Nomuraea rileyi의 특성 및 병원성 검정)

  • Lee, Won Woo;Shin, Tae Young;Ko, Seung Hyun;Choi, Jae Bang;Bae, Sung Min;Woo, Soo Dong
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.284-292
    • /
    • 2012
  • To date, chemical control remains the most common way to reduce beet armyworm (Spodoptera exigua) populations. However, this insect has become more tolerant or resistant to many chemical insecticides and the insect larvae usually hide inside hollow, tube-like leaves of host plant so they were difficult to kill by spraying insecticides. The use of viral and bacterial insecticide to solve these problems has not been successful because of their novel feeding habit. To overcome these problems, in this study, the biological characteristics and virulence of an entomopathogenic fungus isolated from the cadaver of larvae beet armyworm were investigated. Isolated entomopathogenic fungus was identified as Nomeraea rileyi (Farlow) Samson by morphological examinations and genetic identification using sequences of the ITS, ${\beta}$-tubulin gene and EF1-${\alpha}$ regions. This fungus was named as N. rileyi SDSe. Virulence tests against 3rd larvae of beet armyworm were conducted with various conidial suspensions from $1{\times}10^4$ to $10^8$ conidia/ml of N. rileyi SDSe in laboratory conditions. Mortality rate of beet armyworm showed from 20 to 54% and the virulence increased with increasing conidial concentrations. Although N. rileyi SDSe showed low mortality rate against beet armyworm, it is expected that N. rileyi SDSe will be used effectively in the integrated pest management programs against the beet armyworm.

Phellinus linteus Extract Regulates Macrophage Polarization in Human THP-1 Cells (상황버섯 추출물의 인간 유래 THP-1 단핵구 세포주의 분극화 조절)

  • Lee, Sang-Yull;Park, Sul-Gi;Yu, Sun-Nyoung;Kim, Ji-Won;Hwang, You-Lim;Kim, Dong-Seob;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Macrophages are initiators for regulating a host's defenses to eliminate pathogens and trigger tissue repair. Macrophages are classified into two types: classically (M1) activated macrophages and alternatively (M2) activated macrophages. M1-phenotype macrophages directly or indirectly kill infectious organisms and tumor cells via pro-inflammatory responses, whereas M2-phenotype macrophages remodel wounded tissue through anti-inflammatory responses. In this paper, we investigated how Phellinus linteus hot water extract passed from Diaion HP-20 resin (PLEP) regulates polarization of M1-like or M2-like macrophages in human THP-1 cells. PLEP did not have cytotoxicity at a high concentration of 300 ㎍/ml. We observed morphological alteration of the THP-1 cells, which are stimulated by PLEP, LPS/INF-γ (M1 stimulators) or IL-4/IL13 (M2 stimulators). PLEP exposure induced morphology contiguous with LPS/INF-γ. qPCR was also performed to determine whether PLEP influences M1 or M2 polarization-related genes. M1-phenotype macrophage-specific genes, such as TNF-α, IL-1β, IL-6, IL-8, CXCL10 and CCR7, were enhanced by PLEP in a dose-dependent manner similar to LPS/INF-γ. Conversely, M2-phenotype-specific genes, such as MRC-1, DC-SIGN, CCL17 and CCL22, were suppressed by PLEP. PLEP also significantly up-regulated secretory inflammation cytokines related to M1 polarization of macrophages, including TNFα, IL-1β and IL-6, which was similar to the gene expression. Further, MAPK and NF-κB signaling were increased by treatment with PLEP, resulting in enhancement of cytokine secretion. PLEP might therefore be used as a promising booster of pro-inflammatory responses through M1 polarization of human THP-1 cells.

Current Status and Prospects of Various Methods used for Screening Probiotic Microorganisms (Probiotic 미생물 검사에 사용되는 다양한 방법들에 대한 현황과 향후 전망)

  • Kim, Dong-Hyeon;Kim, Hong-Seok;Jeong, Dana;Chon, Jung-Whan;Kim, Hyunsook;Kim, Young-Ji;Kang, Il-Byung;Lee, Soo-Kyung;Song, Kwang-Young;Park, Jin-Hyeong;Chang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.203-216
    • /
    • 2016
  • Probiotic microorganisms are thought to provide health benefits when consumed. In 2001, the World Health Organization defined probiotics as "live microorganisms which confer a health benefit on the host, when administered in adequate amounts." Three methods for screening potential probiotics have currently widely available. (1) In vitro assays of potential probiotics are preferred because of their simplicity and low cost. (2) The use of in vivo approaches for exploring various potential probiotics reflects the enormous diversity in biological models with various complex mechanisms. (3) Potential probiotics have been analyzed using several genetic and omics technologies to identify gene expression or protein production patterns under various conditions. However, there is no ideal procedure for selecting potential probiotics than testing cadidate strains on the target population. Hence, in this review, we provide an overview of the different methodologies used to identify new probiotic strains. Furthermore, we describe futre perspectives for the use of in vitro, in vivo and omics in probiotic research.

Antibiotic Susceptibility of Bacteria Isolated from Infected Root Canals (감염근관에서 분리 배양한 세균의 수종 항생제에 대한 감수성 조사)

  • Lim, Sang-Soo;Kim, Mi-Kwang;Min, Jeong-Beom;Kim, Min-Jung;Park, Soon-Nang;Hwang, Ho-Keel;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.185-194
    • /
    • 2006
  • The aim of this study was to identify the bacteria isolated from endodontic lesions by cell culture and to determine the antimicrobial susceptibility of them against 8 antibiotics. The necrotic pulpal tissues were collected from 27 infected root canals, which were diagnosed as endodontic infection. Samples were collected aseptically from the infected pulpal tissue of the infected root canals using a barbed broach and a paper point. The cut barbed broaches and paper points were transferred to an eppendorf tube containing $500{\mu}l\;of\;1{\times}PBS$. The sample solution was briefly mixed and plated onto a BHI-agar plate containing 5% sheep blood. The agar plates were incubated in a $37^{\circ}C$ anaerobic chamber for 2 to 5 days. The bacteria grown on the agar plates were identified by comparison of 16S rRNA gene (rDNA) sequencing method at the species level. To test the sensitivity of the bacteria isolated from the infected root canals against 8 antibiotics, minimum inhibitory concentrations (MIC) were determined using broth dilution assay. The data showed that 101 bacterial strains were isolated and were identified. Streptococcus spp. (29.7%) and Actinomyces spp. (21.8%) were predominantly isolated. The 9 strains were excluded in antimicrobial susceptibility test because they were lost during the experiment or were not grown in broth culture. The percentage of bacteria susceptible for each antibiotic in this study was clindamycin, 87.0% (80 of 92); tetracycline, 75.0% (69 of 92); cefuroxime axetil, 75.0% (69 of 92); amoxicillin + clavulanic acid (5:1), 71.7% (66 of 92); penicillin G, 66.3% (61 of 92); erythromycin, 66.3% (61 of 92); amoxicillin, 44.6% (41 of 92); and ciprofloxacin, 31.5% (29 of 92). The susceptibility pattern of 8 antibiotics was dependent on the host of the bacteria strains rather than the kinds of bacterial species. These results indicate that antibiotic susceptibility test should be performed when antibiotics are needed for the treatment of infected root canals.

Identification and Chemotype Profiling of Fusarium Head Blight Disease in Triticale (국내 재배 트리티케일에 발생한 붉은곰팡이병의 다양성 및 독소화학형 분석)

  • Yang, Jung-Wook;Kim, Joo-Yeon;Lee, Mi-Rang;Kang, In-Jeong;Jeong, Jung-Hyun;Park, Myoung Ryoul;Ku, Ja-Hwan;Kim, Wook-Han
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.

Research on Immune Responses Induced by Salmonella Typhimurium Infectionin CRIP1-Deficient Condition (CRIP1결손조건 하에서 Salmonella Typhimurium 감염에 의해 유도되는 면역반응에 관한 연구)

  • Dongju Seo;Se-Hui Lee;Sun Park;Hyeyun Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Salmonella is a common food-borne intracellular bacterial pathogen that has triggered significant public health concerns. Salmonella hosts' genetic factors play a pivotal role in determining their susceptibility to the pathogen. Cysteine-rich intestinal protein 1 (CRIP1), a member of LIM/double zinc finger protein family, is widely expressed in humans, such as in the lungs, spleen, and especially the gut. Recently, CRIP1 has been reported as a key marker of several immune disorders; however, the effect of CRIP1 on bacterial infection remains unknown. We aimed to elucidate the relationship between Salmonella infection and CRIP1 gene deficiency, as Salmonella spp. is known to invade the Peyer's patches of the small intestine, where CRIP1 is highly expressed. We found that CRIP1-deficient conditions could not alter the characteristics of bone marrow-derived myeloid cells in terms of phagocytosis on macrophages and the activation of costimulatory molecules on dendritic cells using ex vivo differentiation. Moreover, flow cytometry data showed comparable levels of MHCII+CD11b+CD11c+ dendritic cells and MHCII+F4/80+CD11b+ macrophages between WT and CRIP1 knockout (KO) mice. Interestingly, the basal population of monocytes in the spleen and neutrophils in MLNs is more abundant in a steady state of CRIP1 KO mice than WT mice. Here, we demonstrated that the CRIP1 genetic factor plays dispensable roles in host susceptibility to Salmonella Typhimurium infections and the activation of myeloid cells. In addition, differential immune cell populations without antigen exposure in CRIP1 KO mice suggest that the regulation of CRIP1 expression may be a novel immunotherapeutic approach to various infectious diseases.