• 제목/요약/키워드: horosphere

검색결과 3건 처리시간 0.016초

CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1311-1332
    • /
    • 2013
  • This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power ${\beta}$ of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.

A CHARACTERIZATION OF HOROSPHERES AND GEODESIC HYPERSPHERES IN A COMPLEX HYPERBOLIC SPACE IN TERMS OF RICCI TENSORS

  • Ahn, Seong-Soo
    • 대한수학회보
    • /
    • 제35권3호
    • /
    • pp.503-514
    • /
    • 1998
  • We want to treat this problem for real hypersurfaces in a complex hyperbolic space $J_n(C)$. Thus it seems to be natural to consider some problems concerned with the estimation of the Ricci tensor for real hypersurfaces in $H_n(C)$. In this paper we will find a new tensorial formula concerned with the Ricci tensor and give it a characterization of horospheres and geodesic hyperspheres in a complex hyperbolic space $H_n(C)$.

  • PDF

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.