• Title/Summary/Keyword: horn lens antenna

Search Result 12, Processing Time 0.029 seconds

Design and manufacture of horn lens antennas of 80 GHz MM wave FMCW radar for cryogenic fluids level measurement

  • Jeon, S.M.;Mun, J.M.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2022
  • Recently, development of a cryogenic fluids storage tank for storing or transporting liquid hydrogen is actively in progress. In cryogenic fluids storage tanks, hydrogen evaporates due to the extreme temperature difference inside and outside the tank. As the mass of the cryogenic fluids changes with continuous vaporization, the fluids level also changes. Therefore, there is need for a method of accurately measuring the level change in the storage tank. In the case of general cryogenic fluids, it is difficult to accurately measure the level because the dielectric constant is very low. As a method of measuring cryogenic fluids level with low dielectric constant, it can be used an Millimeter wave (MM wave) FMCW radar sensor. However, the signal sensitivity is very weak and the level accuracy is poor. In this paper, the signal sensitivity is improved by designing the horn lens antenna of the existing 80 GHz FMCW radar sensor. Horn lens antenna is fabricated by FDM/SLA type 3D printer according to horn and lens characteristics. The horn is used to increase the signal gain and the lens improves the signal straightness. This makes it possible to measure the level of cryogenic fluids with a low dielectric constant.

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

A Novel Broadband Horn Antenna with Quadruple-Ridged Waveguide and Dielectric Lens (4중 릿지 도파관과 렌즈를 이용한 새로운 광대역 혼 안테나)

  • Lee, Kee-Oh;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, a design method of broadband horn antenna having 3:1 bandwidth and multiple polarization characteristics is proposed. The feeding section of the antenna adopts quadruple-ridged waveguide type for broadband and multiple polarization characteristics of the antenna. By inserting a shorting bar in the cavity structure with a semi-sphere type back short, the return loss at the feeding section was minimized. A corrugated dielectric lens is designed for phase compensation and lens-surface matching at the antenna aperture, which improves the antenna beam pattern. The validity of the design method is verified by indicating the measured data of the antenna.

The Design of the Ka-band Lens Antenna for Navigation Radar on Helicopter (헬기 장착 항행 레이더용 Ka-대역 렌즈 안테나 설계)

  • Moon Sang-Man;Kim Hyounk-Young;Kim In-Kyu;Lee Sang-Jong;Kim Tae-Sik;Lee Hee-Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.53-60
    • /
    • 2004
  • In this paper, the radar antenna of navigation radar on helicopter was suggested to Ka-band lens antenna. It is type of the streamlined convex lens to reduce the air resistivity when helicopter was navigated. Although aperture area is smaller than the standard antenna just like horns, the gain is higher and beamwidth is smaller than standard horns. We made the lens by using maximum flare angle of the horn and dielectric constant of the lens. As a result, when aperture diameter was 280mm and focal length was 145mm, the return loss -21.25dB, the gain was 32.2dBi, E and H beamwidth was $1.8^{\circ}$(E-plane), $1.4^{\circ}$(H-plane), nearly $1.5^{\circ}$, and side-lobe level was -18.4 dB(E-plane), -19.5dB(H-plane) lower were presented. So this suggested type can be used for the radar antenna of navigation radar on helicopter, and it will possible just a little some sidelobe suppression by using the choked horn as a feeder horn.

The Antenna Radiating Pattern and Gain's changes according to Insulating Material (절연재에 따른 TEM 안테나의 방사패턴 및 이득 변화)

  • Lee, Ye-Na;Choi, Sun-Ho;Huh, Chang-Su;Choi, Jin-Su;Park, Woo-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.666-670
    • /
    • 2014
  • TEM Horn antenna is typically used in HPEM area. It is necessary to apply a high voltage of the antenna for radiating HPEM. Then, it is necessary to insulate essentially of applying a high voltage to the antenna. At this time, radiation pattern and gain of the TEM Antenna is changed. For this reason, it is necessary to analyze changing characteristics by using simulation. In this paper, I analyzed the radiation pattern of the antenna in accordance with the lens and insulating material. As a result, it was observed that the value of the gain is changed in accordance with the frequency. The lens is used for the antenna, the gain characteristic is improved.

A High Gain Corrugated Horn Antenna with Dielectric Lens (유전체 렌즈가 삽입된 고이득 Corrugated 혼 안테나)

  • Lee, Hojoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.486-489
    • /
    • 2016
  • A horn antenna with corrugation structure and a PTFE(Polytetrafluoroethylene) teflon(relative permittivity=2.1) dielectric lens for good impedance matching characteristic and high gain performance is proposed in this paper. The proposed antenna shows measured return loss below -25 dB over the operating X band(8~12 GHz), the peak gain of 22.3 dBi at the center frequency(10 GHz) and has overall size of $110mm{\times}110mm{\times}135mm$. Considering the performance of the proposed antenna, it is suitable for being inserted in a radar level transmitters, particularly for gas tanks on vessels or off-shore plants containing gas with very low reflectivity and relative permittivity such as LNG or LPG.

Gain Enhancement of a Horn Antenna with Latticed Aperture (격자로 분할된 개구면을 갖는 혼 안테나의 이득 개선)

  • Hur, Moon-Man;Lee, In-Jae;Lim, Gye-Jae;Yoon, Hyun-Bo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.1000-1006
    • /
    • 2006
  • In this paper, the gain of the square hem antenna is enhanced with $3{\times}3$ latticed aperture. In order to get the uniform field distribution on the aperture, the different thicknesses of dielectric plates for the phase compensation are inserted into the center and the edge of the aperture respectively. The proposed horn antenna is designed at 12.5 GHz band, and then the analysis of the field distribution on the aperture is performed by using FDTD method. The radiation pattern is also calculated from the analysis. Based on the measured data, it is verified that the gain of a horn antenna with latticed aperture is 18 dBi and this is 2 dB gain enhancement compare with a normal horn antenna without latticed aperture.

Regression Progress to Evaluate Metal Scale Thickness using Microwave (전파를 이용한 도체 Scale 분석에 Regression Progress 기법 이용 연구)

  • Muhn, Sung-Jin;Park, Wee-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.1-5
    • /
    • 2010
  • This paper deals with a method to measure the thickness of scale-layer, iron oxide formed on the surface of the rolling steel, using a dielectric lens antenna. The dielectric lens antenna has an independent characteristic with the frequency in the X-band and changes the spherical wave radiated from a horn antenna into a plane wave at the focusing point. Using this concept, we regard a scale-layer on the rolling steel as a dielectric-PEC(Perfect Electric Conductor) layer and apply a theoretical analysis of the normal-incident plane wave. To reduce the phase error arising from the use of the dielectric lens antenna, this paper utilizes a regression process algorithm. In comparison with the conventional iteration algorithm, the present algorithm led to a unique solution for the thickness of the scale-layer.

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (반사판을 이용한 밀리미터파 수동 이미징 시스템 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Jung, Kyung-Kwon;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • We have developed a millimeter-wave passive imaging system with reflector for detection of concealed objects. We have designed a millimeter-wave sensor, control device for reflector control, and a lens for focusing of millimeter-wave signal at center frequency of 94GHz. DC signal from millimeter-wave sensor output is filtered by low pass filter and amplified by video amplifier, and then converted into digital signal by using ADC/DAQ. This signal is image processed by computer, and it is possible to obtain millimeter-wave passive image with resolution of $18{\times}64$ pixel using the fabricated system. It is shown that we can obtain the image of men and concealed object with the system.

A Design of Gaussian Beam Guiding System for Cassegrain Antennas (카세그레인 안테나용 가우시안 빔 가이딩 시스템 설계)

  • Han, Seog-Tae;Lee, Jeong-Won;Kang, Jiman;Chung, Moon-Hee;Je, Do-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.851-868
    • /
    • 2015
  • A radio telescope which has been dominantly used for millimeter and submillimeter wave radio astronomy is a cassegrain antenna. A various receivers with specified observing bandwidths are installed on cassegrain antenna so as to carry out to investigate a diverse radio astronomy. A beam guiding system should be required so that a various receiver can be conducted their own observational frequency bands. The beam guiding system based on Gaussian beam transmission theory consists of quasi-optical circuit used such ellipsoidal mirror, dielectric lens and feed horn. In this paper, not only Gaussian beam transformations based on Gaussian beam theory are presented, but also design techniques for quasi-optical circuit are given. By using proposed design techniques, both Gaussian beam quasi-optical circuits to be used for cassegrain antenna and design results are also described. Properties of key focusing elements such ellipsoidal mirror and dielectric lens and feed horn are also discussed. It is expected that beam guiding system to be applied cassegrain antenna could be easily designed by using proposed design techniques.