• Title/Summary/Keyword: hormone sensitive lipase

Search Result 65, Processing Time 0.033 seconds

High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets

  • Lee, Eun Young;Kim, Sun Lim;Kang, Hyeon Jung;Kim, Myung Hwan;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.10 no.6
    • /
    • pp.575-582
    • /
    • 2016
  • BACKGROUNG/OBJECTIVES: The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. MATERIALS/METHODS: A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. RESULTS: After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group (P < 0.05), and kidney fat and epididymal fat pad weights were significantly lower in the HFCS group compared to the HF group (P < 0.05). In the HFCS group, CCAAT/enhancer binding protein-${\beta}$, peroxisome proliferator-activated receptor-${\gamma}1$ (PPAR-${\gamma}1$), and PPAR-${\gamma}2$ mRNA expression levels were significantly reduced (P < 0.05) in the epididymal fat pad, whereas cluster of differentiation 36, lipoprotein lipase, acetyl-CoA carboxylase-1, sterol regulatory element binding protein-1c, pyruvate dehydrogenase kinase, isozyme-4, glucose-6-phosphate dehydrogenase, and stearoyl-CoA desaturase-1 mRNA expression levels were significantly decreased in liver and adipose tissues (P < 0.05). In the HFCS group, mRNA expression levels of AMP-activated protein kinase, hormone-sensitive lipase, and carnitine palmitoyltransferase-1 were elevated (P < 0.05). CONCLUSIONS: It can be concluded that high maysin corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in lipolysis and fat oxidation, further inhibiting body fat accumulation and body weight elevation in experimental animals.

Verification of the Effect of Lemon Balm Extract on Triglyceride Control According to the Extraction Solvent (추출용매에 따른 레몬밤 추출물의 중성지방 조절 효능 검증)

  • Kim, Ji Youn;Kim, Kyoung Kon;Lee, Hye Rim;Kim, Dae Jung;Kim, Tae Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.372-379
    • /
    • 2022
  • This study investigated the effect of lemon balm (Melissa officinalis) extract on improving blood triglycerides according to the extraction solvent using 3T3-L1 cells. Lemon balm was extracted with water (MOW100), 70% ethanol (MOE70), 50% ethanol (MOE50), and 30% ethanol (MOE30). To verify its efficacy on improving blood triglycerides, cell viability, lipid accumulation, triglyceride (TG) content, and expressions of protein kinase A (PKA), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), perilipin, and CGI-58 proteins were evaluated. Cytotoxicity was not evident up to an extract concentration of 1 mg/mL. Lipid accumulation and TG content were decreased in a concentration-dependent manner compared to their levels in the control group. When the MOW100 extract was applied at a concentration of 0.2 mg/mL, an inhibitory effect was evident, with lipid accumulation inhibited by 21.3% and TG content reduced by 32.7%. PKA phosphorylation and ATGL HSL and CGI-58 levels were increased. The data indicate that lemon balm extract obtained using water is more efficacious than extracted with ethanol. The aqueous extract shows potential in triglyceride control through lipolysis and lowering triglyceride levels.

Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on growth performance, blood indexes, tissue fatty acid composition and the expression of peroxisome proliferator-activated receptor gamma signaling related genes in finishing pigs

  • Chen, Jing;Cui, Hongze;Liu, Xianjun;Li, Jiantao;Zheng, Jiaxing;Li, Xin;Wang, Liyan
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.730-739
    • /
    • 2022
  • Objective: This study investigated the effects of dietary n-6:n-3 polyunsaturated fatty acid (PUFA) ratio on growth performance, blood indexes, tissue fatty acid composition and the gene expression in finishing pigs. Methods: Seventy-two crossbred ([Duroc×Landrace]×Yorkshire) barrows (68.5±1.8 kg) were fed one of four isoenergetic and isonitrogenous diets with n-6:n-3 PUFA ratios of 2:1, 3:1, 5:1, and 8:1. Results: Average daily gain, average daily feed intake and gain-to-feed ratio had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The concentrations of serum triglyceride, total cholesterol and interleukin 6 were linearly increased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio, while that of high-density lipoprotein cholesterol tended to decrease (p = 0.062), and high-density lipoprotein cholesterol:low-density lipoprotein cholesterol ratio and leptin concentration were linearly decreased (p<0.05). The concentration of serum adiponectin had a quadratic response but the measurement was decreased and then increased (quadratic, p<0.05). The proportion of C18:3n-3 was linearly decreased (p<0.05) in the longissimus thoracis (LT) and subcutaneous adipose tissue (SCAT) as dietary n-6:n-3 PUFA ratio increasing, while the proportion of C18:2n-6 and n-6:n-3 PUFA ratio were linearly increased (p<0.05). In addition, the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase in the LT and SCAT, and adipocyte fatty acid binding protein and hormone-sensitive lipase (HSL) in the SCAT had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The expression of HSL in the LT was linearly decreased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio. Conclusion: Dietary n-6:n-3 PUFA ratio could regulate lipid and fatty acid metabolism in blood and tissue. Reducing dietary n-6:n-3 PUFA ratio (3:1) could appropriately suppress expression of related genes in PPARγ signaling, and result in improved growth performance and n-3 PUFA deposition in muscle and adipose tissue in finishing pigs.

Effect of sweet pumpkin powder on lipid metabolism in leptin-deficient mice (Leptin 유전자 결핍 동물모델에서 단호박분말 투여가 지방대사변화에 미치는 영향)

  • Inae Jeong;Taesang Son;Sang-myeong Jun;Hyun-Jung Chung;Ok-Kyung Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.469-482
    • /
    • 2023
  • Purpose: Obesity has emerged as a critical global public health concern as it is associated with and increases susceptibility to various diseases. This condition is characterized by the excessive enlargement of adipose tissue, primarily stemming from an inequity between energy intake and expenditure. The purpose of this study was to investigate the potential of sweet pumpkin powder in mitigating obesity and metabolic disorders in leptin-deficient obese (ob/ob) mice and to compare the effects of raw sweet pumpkin powder (HNSP01) and heat-treated sweet pumpkin powder (HNSP02). Methods: Leptin-deficient obese mice were fed a diet containing 10% HNSP01 and another containing 10% HNSP02 for 6 weeks. Results: The supplementation of ob/ob mice with HNSP01 and HNSP02 resulted in decreased body weight gain, reduced adipose tissue weight, and a smaller size of lipid droplets in the adipose tissue and liver. Furthermore, the ob/ob-HNSP01 and ob/ob-HNSP02 supplemented groups exhibited lower levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, and insulin, as well as a reduced atherogenic index in comparison with the control group. Molecular analysis also demonstrated that the intake of HNSP01 and HNSP02 resulted in a diminished activation of factors associated with fatty acid synthesis, including acetyl-CoA carboxylase and fatty acid synthase, while concurrently enhancing factors associated with lipolysis, including adipose triglyceride lipase and hormone-sensitive lipase, in the adipose tissue. Conclusion: Taken together, these findings collectively demonstrate the potential of sweet pumpkin powder as a functional food ingredient with therapeutic properties against obesity and its associated metabolic disorders, such as insulin resistance and dyslipidemia.

Lipolytic Effect of Methanol Extracts from Luffa cylindrica in Mature 3T3-L1 Adipocytes (분화된 3T3-L1 세포에서 수세미오이 메탄올 추출물의 지방분해 효과)

  • Cha, Seung-Youn;Jang, Ja-Young;Lee, Yoo-Hyun;Lee, Gyu-Ok;Lee, Ho-Joon;Hwang, Kwon-Tack;Kim, Yong-Jae;Jun, Woo-Jin;Lee, Jeong-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.813-819
    • /
    • 2010
  • The intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to the control, lipid accumulation was significantly decreased by 19.4% with the treatment of LCM at the concentration of $1000\;{\mu}g$/mL. Intracellular triglyceride (TG) level was also reduced by 21% at the concentration of $1000\;{\mu}g$/mL. To determine the mechanism for the reduction in TG content, levels of glucose uptake and glycerol release were measured. Incubation of the 3T3-L1 adipocytes with LCM did not affect the cellular uptake of glucose. However, the level of free glycerol released into the cultured medium drastically increased by 24.3% with the treatment of LCM. In subsequent measurements using quantitative real-time PCR, mRNA levels of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) except lipoprotein lipase (LPL) were significantly elevated at higher concentration. These results suggest that LCM partially stimulates the lipolysis through the induction of HSL and/or ATGL gene expression, resulting in the reduced lipid accumulation and increased glycerol release.

Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs

  • Li, Wei;Li, Bo;Lv, Jiaqi;Dong, Li;Zhang, Lili;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.686-695
    • /
    • 2018
  • Objective: The objective of this study was to investigate the effects of dietary choline supplementation on hepatic lipid metabolism and gene expression in finishing pigs with intrauterine growth retardation (IUGR). Methods: Using a $2{\times}2$ factorial design, eight normal birth weight (NBW) and eight IUGR weaned pigs were fed either a basal diet (NBW pigs fed a basal diet, NC; IUGR pigs fed a basal diet, IC) or a diet supplemented with two times more choline than the basal diet (NBW pigs fed a high-choline diet, NH; IUGR pigs fed a high-choline diet, IH) until 200 d of age. Results: The results showed that the IUGR pigs had reduced body weight compared with the NBW pigs (p<0.05 from birth to d 120; p = 0.07 from d 120 to 200). Increased (p<0.05) free fatty acid (FFA) and triglyceride levels were observed in the IUGR pigs compared with the NBW pigs. Choline supplementation decreased (p<0.05) the levels of FFAs and triglycerides in the serum of the pigs. The activities of malate dehydrogenase and glucose 6-phosphate dehydrogenase were both increased (p<0.05) in the livers of the IUGR pigs. Choline supplementation decreased (p<0.05) malate dehydrogenase activity in the liver of the pigs. Gene expression of fatty acid synthase (FAS) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation decreased (p<0.05) FAS and acetyl-CoA carboxylase ${\alpha}$ expression in the livers of the IUGR pigs. The expression of carnitine palmitoyl transferase 1A (CPT1A) was lower (p<0.05) in the IC group than in the other groups, and choline supplementation increased (p<0.05) the expression of CPT1A in the liver of the IUGR pigs and decreased (p<0.01) the expression of hormone-sensitive lipase in both types of pigs. The gene expression of phosphatidylethanolamine N-methyltransferase (PEMT) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation significantly reduced (p<0.05) PEMT expression in the liver of the IUGR pigs. Conclusion: In conclusion, the lipid metabolism was abnormal in IUGR pigs, but the IUGR pigs consuming twice the normal level of choline had improved circulating lipid parameters, which could be related to the decreased activity of nicotinamide adenine dinucleotide phosphate-generating enzymes or the altered expressions of lipid metabolism-related genes.

Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes (황정 에탄올 추출물의 비만 조절 유전자에 대한 효과)

  • Jeon, Woo-Jin;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In previous studies, we confirmed that the ethanol extract of Polygonatum sibiricum (ID1216) has anti-obesity effects on high-fat diet-fed mice. To identify the obesity-related genes affected by ID1216, we studied its effects both in vivo and in vitro. In mice, single administration of ID1216 increased the expression of obesity-related genes including sirtuin1 (SIRT1), peroxisome proliferator-activated receptor ${\gamma}$ coactivator $1{\alpha}$ ($PGC1{\alpha}$) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) compared to that in mice administered the vehicle; their downstream genes (uncoupling proteins, acyl-CoA oxidase, adipocyte protein 2, and hormone-sensitive lipase) were also increased by ID1216. In fully differentiated 3T3-L1 adipocytes, ID1216 showed the same effects on anti-obesity genes as those in the animal model. Based on these results, we propose that ID1216 has anti-obesity effects by regulating the $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway and their downstream genes, thereby controlling energy and lipid metabolisms.

Effects of Dietary Dihydropyridine Supplementation on Laying Performance and Fat Metabolism of Laying Hens

  • Zou, X.T.;Xu, Z.R.;Zhu, J.L.;Fang, X.J.;Jiang, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1606-1611
    • /
    • 2007
  • The experiment was conducted to investigate the effects of dihydropyridine on laying performance and fat metabolism of laying hens. Five hundred and forty laying hens, 40 weeks old, were randomly allotted to three groups, each of which included four replicates of 45 hens. The groups were given a basal corn-soybean meal diet supplemented with 0, 150 mg/kg and 300 mg/kg dihydropyridine. Results showed that compared with the control group (0 mg/kg dihydropyridine), supplements of 150 and 300 mg/kg dihydropyridine increased egg production rate by 9.39% (p<0.01) and 12.97% (p<0.01), increased mean egg weight by 3% (p>0.05) and 4.8% (p>0.05), and improved feed efficiency by 9.54% (p<0.05) and 7.25% (p<0.05), respectively; The addition of 150 and 300 mg/kg dihydropyridine decreased percentage of abdominal fat by 35.4% (p<0.05) and 46.9% (p<0.05), decreased liver fat content by 32.4% (p<0.05) and 10.5% (p<0.05), increased HSL activity of abdominal fat by 39.64% (p<0.05) and 48.48% (p<0.05), increased HSL activity of liver by 9.4% (p>0.05) and 47.34% (p<0.05) and increased the content of cAMP in adenohypophysis by 14.67% (p<0.05) and 10.91% (p<0.05), respectively; The inclusion of 150 mg/kg dihydropyridine increased liver superoxide dismutase activity by 69.61% (p<0.05), and increased hepatic apoB concentration by 53.96% (p<0.05); The supplementation of 150 or 300 mg/kg dihydropyridine decreased malondialdehyde concentration of hepatic mitochondria by 30.90% (p<0.01) and 10.39% (p<0.05), respectively; Supplemented dihydropyridine had no significant effects on TG, Ch HDL-C and VLDL-C concentrations in serum; addition of 150 or 300 mg/kg dihydropyridine increased T3 levels in serum by 15.34% (p<0.05) and 11.88% (p<0.05) and decreased insulin concentration by 40.44% (p<0.05) and 54.37% (p<0.05), respectively. The results demonstrated that adding dihydropyridine had the tendency of improving very low density lipoprotein receptor (VLDLR) content in the ovary. It was concluded that dihydropyridine could improve laying performance and regulate the fat metabolism of laying hens and that 150 mg/kg dihydropyridine is the optimum dose for laying birds in practical conditions.

The Ratio of Dietary n-3 Polyunsaturated Fatty Acids Influences the Fat Composition and Lipogenic Enzyme Activity in Adipose Tissue of Growing Pigs

  • Song, Chang Hyun;Oh, Seung Min;Lee, SuHyup;Choi, YoHan;Kim, Jeong Dae;Jang, Aera;Kim, JinSoo
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.242-253
    • /
    • 2020
  • Currently, there is a growing interest among consumers in selecting healthier meat with a greater proportion of essential fatty acids (FA). This experiment was conducted to evaluate the role of different ratios of dietary n-6:n-3 on growth performance, FA profile of longissimus dorsi (LD), relative gene expression of cytokines, meat quality, and blood parameters in finishing pigs. A total of 108 finishing pigs was randomly allotted to three treatments including a control (basal diet) and low ratios (4:1 and 2:1) of n-6:n-3. The 4:1 and 2:1 diets decreased the overall stearic acid in LD. There were reductions in the content of stearic acid, palmitoleic acid, total saturated acid, and n-6:n-3 ratio of LD in pigs fed 4:1 and 2:1 diet compared with the control diet. The 4:1 and 2:1 diets increased the concentration of α-Linolenic acid and polyunsaturated FA in the LD of pigs. Acetyl-CoA carboxylase enzyme gene was down-regulated in pigs fed 2:1 diet compared with finishing pigs fed the control or 4:1 diets. The relative expression of hormone-sensitive lipase was increased in pigs fed 2:1 and 4:1 ratio diets. Lower total cholesterol of plasma was observed in finishing pigs fed 2:1 and 4:1 diets. The cooking loss ratio of meat was lower in pigs fed the 2:1 and 4:1 diets compared with the control diet. Pigs fed the 4:1 and 2:1 diets had greater final body weight. In conclusion, the 2:1 and 4:1 diets have the potential to increase the meat quality and growth performance of pigs.

Effects of Chromium on Energy Metabolism in Lambs Fed with Different Dietary Protein Levels

  • Yan, Xiaogang;Zhang, Fangyu;Li, Dong;Zhu, Xiaoping;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 2010
  • The effects of chromium (Cr), dietary crude protein (CP) level, and potential interactions of these two factors were investigated in term of energy metabolism in lambs. Forty-eight 9-week-old weaned lambs (Dorper${\times}$Small-tail Han sheep, male, mean initial body weight = 22.96 kg${\pm}$2.60 kg) were used in a 2${\times}$3 factorial arrangement of supplemental Cr (0 ${\mu}g$/kg, 400 $\mu{g}$/kg or 800 ${\mu}g$/kg from chromium yeast) and protein levels (low protein: 157 g/d to 171 g/d for each animal, or high protein: 189 g/d to 209 g/d for each animal). Blood samples were collected at the beginning and end of the feeding trial. The lambs were then sacrificed and tissue samples were frozen for further analysis. Chromium at 400 ${\mu}g$/kg decreased fasting insulin level and the ratio of plasma insulin to glucagon, but these differences were not statistically significant; in contrast, chromium at 800 ${\mu}g$/kg increased the ratio significantly (p<0.05). Protein at the high level increased plasma tumor necrosis factor $\alpha$ (TNF-$\alpha$) level (p = 0.060). Liver glycogen content was increased significantly by Cr (p<0.05), which also increased liver glucose-6-phosphatase (G-6-Pase) and adipose hormone-sensitive lipase (HSL) activity. At 400 ${\mu}g$/kg, Cr increased muscle hexokinase (HK) activity. High protein significantly increased G-6-Pase activities in both the liver (p<0.05) and the kidney (p<0.05), but significantly decreased fatty acid synthase (FAS) activity in subcutaneous adipose tissue (p<0.05). For HSL activity in adipose tissue, a Cr${\times}$CP interaction (p<0.05) was observed. Overall, Cr improved energy metabolism, primarily by promoting the glycolytic rate and lipolytic processes, and these regulations were implemented mainly through the modulation by Cr of the insulin signal transduction system. High protein improved gluconeogenesis in both liver and kidney. The interaction of Cr${\times}$CP indicated that 400 $\mu{g}$/kg Cr could reduce energy consumption in situations where energy was being conserved, but could improve energy utilization when metabolic rate was increased.