• Title/Summary/Keyword: horizontally curved beam

Search Result 27, Processing Time 0.016 seconds

Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section (두께가 얇은 단면을 갖는 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

Differential Quadrature Analysis for Vibration of Wide-Flange Curved Beams (D.Q.M.을 이용한 I-단면 곡선보의 진동해석)

  • Ji-Won Han;Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • The differential quadrature method (D.Q.M.) is applied to computation of eigenvalues of small-amplitude free vibration for horizontally curved beams including a warping contribution. Fundamental frequencies are calculated for a single-span, curved, wide-flange beam with both ends simply supported or clamped, or simply supported-clamped end conditions. The results are compared with existing exact solutions and numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Free Vibration Analysis of horizontally Curved Beams considering Warping and Rotatory Inertia (?과 회전관성을 고려한 수평 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진;진태기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2001
  • 본 연구는 변화곡률 수평 곡선보의 면외 자유진동에 관한 연구이다. 뒴과 회전관성을 고려한 변화곡률 수평 곡선보의 자유진동을 지배하는 상미분방정식이 유도되었고, 이 지배미분방정식을 수치해석하여 곡선보의 고유진동수를 산출하였다. 지배미분방정식을 수치적분하기 위하여 Runge-Kutta method를 이용하였고, 고유진동수를 산출하기 위하여 Regula-Falsi method와 결합한 행렬값 탐사법을 이용하였다. 본 연구의 이론적 타당성을 검증하기 위하여 타문헌의 고유진동수와 비교하였고, 실험실 규모의 모형실험을 실시하여 이론값과 실험값의 고유진동수를 비교하였다. 수치해석의 결과로 무차원 재변수들의 변화에 따른 무차원 고유진동수를 제 3모드까지 산출하였고, 그 결과들을 고찰하였다. 본 연구의 결과는 곡선형 교량 등과 같이 곡선부재로 이루어진 구조물의 설계시에 유용하게 이용될 수 있을 것으로 기대된다.

  • PDF

Free Vibrations of Horizontally Curved Beams with Variable Cross Section (변다면 수평 곡선보의 자유진동에 관한 연구)

  • 이병구;박광규;모정만;이재만
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.155-164
    • /
    • 1998
  • 이 논문은 변단면을 고려한 수평 곡선보의 자유진동에 관한 연구이다. 진동시 곡선보 요소에 작용하는 합응력과 관성력의 동적평형방정식을 이용하여 변단면 원호형 수평 곡선보의 자유진동을 지배하는 상미분방정식을 유도하였다. 이 미분방정식을 원형 단면을 갖는 선형변변단면에 적용하여 고유진동수, 진동형 및 합응력을 산출하였다. 수치 해석예에서는 양단고정 및 양단회전 곡선보를 채택하였으며, 수치해석 결과로서 고유진동수와 단면비, 세장비 및 중심각 사이의 관계를 그림에 나타내었다. 또한 실험실 규모의 실험을 통하여 본 연구결과의 타당성을 보였다.

  • PDF

Dynamic Behavior of Curved Bridges under Seismic Loading (지진하중을 받는 곡선교량의 동적거동)

  • Park, Nam-Hoi;Yoon, Ki-Yong;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.11-21
    • /
    • 2005
  • This study is performed to understand complex behavior and to investigate the rational analysis methods for seismic design of the curved bridges. To analyze the curved bridges for the seismic loadings, it is used that the finite element analysis program has the 7-dof curved beam and straight beam element. The free vibration characteristics of the curved bridges are compared with the straight bridges that have span length same as the average arc length of inside and outside girder of those. For the same case, the dynamic behavior is compared under seismic loadings. It is found that regular bridges classified by AASHTO are analyzed as if those were straight. To investigate the dynamic behavior of general curved bridges under seismic loading, the seismic loading directions and the subtended angle of curved bridges are varied.

Inelastic response of wide flange steel beams curved by symmetrical weak axis bending using two-point loads

  • Gergess, Antoine N.;Sen, Rajan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.951-965
    • /
    • 2014
  • Point bending is commonly used for cambering and curving steel girders to large radii. In this system, a hydraulic ram or press is used to apply concentrated loads at selected points to obtain the required vertical (cambering) or horizontal (curving) curved profile from induced permanent deformations. This paper derives closed form solutions that relate loads to permanent deformations for horizontally curving wide flange steel beams based on their post-yield response. These solutions are presented in a parametric form to identify the relationship between key variables and their impact on the accuracy of the curving operation. It is shown that point bending could yield parabolic curved profiles that are within 1% of a desired circular curve if the span length to radius of curvature ratio (L / R) is less than 1.5 and the point loads are spaced at one third the beam length. Safe limits are then established on loads, strains and curvatures to avoid damaging the steel section. This leads to optimization of the point bending operation for inducing a circular profile in wide flange steel beams of any size.

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.