• Title/Summary/Keyword: horizontal stresses

Search Result 200, Processing Time 0.029 seconds

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake (지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향)

  • Kim, Jung-Tae;Hong, Eun-Soo;Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.861-874
    • /
    • 2019
  • A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Evaluation of Effect of Rock Joints on Seismic Response of Tunnels (터널의 지진응답에 대한 암반 절리의 영향 평가)

  • Yoo, Jin-Kwon;Chang, Jaehoon;Park, Du-Hee;Sagong, Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.41-55
    • /
    • 2014
  • In performing seismic analysis of tunnels, it is a common practice to ignore the rock joints and to assume that the rock mass surrounding the tunnel is continuous. The applicability of this assumption has not yet been validated in detail. This study performs a series of pseudo-static discrete element analyses to evaluate the effect of rock joint on the seismic response of tunnels. The parameters considered are joint intersection location, joint spacing, joint stiffness, joint dip, and interface stiffness. The results show that the joint stiffness has the most critical influence on the tunnel response. The tunnel response increases with the spacing, resulting in localized concentration of moment and shear stress. The response of the tunnel is the lowest for joints dipping at $45^{\circ}$. This is because large shear stresses result in rotation of the principal planes by $45^{\circ}$. In summary, the weathered and smooth, vertical or horizontal, and widely spaced joint set will significantly increase the tunnel response under seismic loading. The tunnel linings are shown to be most susceptible to damage due to induced shear stress, and therefore should be checked in the seismic design.

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF $BR{\AA}NEMARK\;NOVUM^{(R)}$ IMMEDIATE IMPLANT PROSTHODONTIC PROTOCOL ($Br{\aa}nemark\;Novum^{(R)}$ 즉시 임플랜트 보철 수복 방법에 관한 삼차원 유한요소 분석적 연구)

  • Kim Woo-Young;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.463-476
    • /
    • 2001
  • Since the treatment of edentulous patients with osseointegrated implant was first introduced more than 30 years ago, implant therapy has become one of the most important dental treatment modalities today. Based on the previous experience and knowledge, $Br{\aa}nemark\;Novum^{(R)}$ protocol was introduced with the concept of simplifying surgical and prosthetic technique and reducing healing time recently. This protocol recommends the installation of three 5mm wide diameter futures in anterior mandible and the prefabricated titanium bars for superstructure fabrication. This study was designed to analyze the stress distribution at fixture and superstructure area according to changes of fixture number, diameter and superstructure materials. Four 3-dimensional finite element models were fabricated. Model 1 - 5 standard fixtures (13mm long and 3.75mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 2- 3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 3-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and resin Model 4-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and porcelain A 150N occlusal force was applied on the 1st molar of each model in 3 directions - vertical($90^{\circ}$), horizontal($0^{\circ}$) and oblique($120^{\circ}$). After analyzing the stresses and displacements, following results were obtained. 1. There were no significant difference in stress distribution among experimental models. 2. Model 2, 3, 4 showed less amount of compressive stress than that of model 1. However, tensile stress was similar. 3. Veneer material with a high modulus of elasticity demonstrated less stress accumulation in the superstructure. Within the limites of this study, $Br{\aa}nemark\;Novum^{(R)}$ protocol demonstrated comparable biomechanical properties to conventional protocol.

  • PDF

A Nonlinear Structural Analysis for a Composite Structure Composed of Spent Nuclear Fuel Disposal Canister and Bentonite Buffer: Symmetric Rock Movement (고준위폐기물 처분용기와 벤토나이트 버퍼로 이루어진 복합구조물에 대한 비선형 구조해석: 대칭 암반 전단력)

  • 권영주;최석호;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • In this paper, a nonlinear structural analysis for the composite structure composed of the spent nuclear fuel disposal canister and the 50㎝ thick bentonite buffer is carried out to predict the collapse of the canister while the horizontal symmetric sudden rock movement of 10㎝ is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucket-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the canister(cast iron, copper). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffet, the canister structure still endures elastic small strains and stresses below the yield strength. Hence, the 50㎝ thick bentonite buffet can protect the canister safely against the 10㎝ sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the canister structure due to the shear deformation of the bentonite buffer.

Numerical Study for Application of Sheet Pile Retaining Wall Reinforced with H-pile (H-pile로 보강된 Sheet pile 흙막이 벽체의 적용을 위한 수치해석)

  • Cho, Kwangjun;Jun, Sanghyun;Suh, Jeeweon;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.23-33
    • /
    • 2015
  • This paper is results of numerical study for application of sheet pile retaining wall reinforced with H-pile as sheet piles are needed in field for a cutoff wall and are limited to use because of driveability in the ground condition of having a larger strength than a weathered rock. Extensive 101 cases of numerical approach were conducted to investigate the behavior of sheet pile retaining wall reinforced with H-pile, changing installing members of two types of sheet pile and three types of H-pile, the embedded depth of sheet pile and H-pile, the horizontal space between H-piles and excavation conditions. As the results of numerical analysis, combined use of the sheet pile SP-IIIA with H-Pile H250 and the sheet pile SP-IV with H-Pile H350 among precast products was found to be efficient since two members tended to reach allowable stresses simultaneously or have similar stress concentration ratios. Increased stiffness in reinforced sheet pile showed reduction of lateral displacement of wall. Embedded depth of sheet pile did not affect stability of wall significantly so that driving the penetrable depth of sheet pile should be enough to maintain stability of wall and satisfy purposes of cutoff and stiffness increase of wall.

A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures (막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Jeong-Sub;Jeon, Seung-Chan;Jeon, Sang-Joon;Park, Byung-Soo;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1003-1022
    • /
    • 2018
  • In the current work, a series of three-dimensional finite element analyses were carried out to understand the behaviour of a pre-existing single pile to the changes of the tunnel face pressures when a shield TBM tunnel passes underneath the pile. The numerical modelling analysed the results by considering various face pressures (25~100% of the in-situ horizontal stress prior to tunnelling at the tunnel springline). In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses have been thoroughly analysed for different face pressures. The head settlements of the pile with the maximum face pressure decreased by about 44% compared to corresponding settlement with the minimum face pressure. Furthermore, the maximum axial force of the pile developed with the minimum face pressure. The tunnelling-induced axial pile force at the minimum face pressure was found to be about 21% larger than that with the maximum face pressure. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures. In addition, the influence of the piles and the ground was analysed by considering characteristics of the soil deformations. Also, the apparent safety factor of the piles are substantially reduced for all the analyses conducted in the current simulation, resulting in severe effects on the adjacent piles. Therefore, the behaviour of the piles, according to change the face pressures, has been extensively examined and analysed by considering the key features in great details.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.